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Tutorial Slot

Tuesday, 16:15 - 18:00

works for everybody?

Mo Tue Wed Thu Fri

10-12

12-14 new

14-16

16-18 current

alternative time slot:



I. SETH



Satisfiability Problem

CNF-SAT: boolean variables 𝑥",… , 𝑥%
clauses 𝐶",… ,𝐶' are an OR over literals

(x1 _ ¬x2 _ x4) ^ (x3 _ ¬x3)^
(¬x1 _ x2 _ x3 _ x4)

decide whether an assignment of 𝑥",… , 𝑥% satisfies ALL clauses
unbounded clause width

k-SAT: clause width bounded by 𝑘

= variable or 
negated variable

= number of literals per clause

thus 𝑀 ≤ 𝑁,



Satisfiability Hypotheses

P ≠ NP: k-SAT not in time poly(𝑁) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3

k-SAT not in time 2>(%) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3
ETH (Exponential Time Hypothesis)

k-SAT not in time 𝑂(2 "@A %)∀𝜀 > 0:	∃𝑘 ≥ 3:

SETH (Strong Exponential Time Hypothesis)

⟹
⟹

[Impagliazzo,Paturi,Zane’01]

best-known algorithm for k-SAT:  𝑂(2 "@FG H)where 𝑐, = Θ(1/𝑘)
[Paturi,Pudlak,Saks,Zane’98]



Satisfiability Hypotheses

P ≠ NP: k-SAT not in time poly(𝑁) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3

k-SAT not in time 2>(%) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3
ETH (Exponential Time Hypothesis)

SETH (Strong Exponential Time Hypothesis)

CNF-SAT not in time 𝑂(poly 𝑀 	2 "@A %)
“CNF-SETH”

⟹
⟹
⟹

[Impagliazzo,Paturi,Zane’01]

k-SAT not in time 𝑂(2 "@A %)∀𝜀 > 0:	∃𝑘 ≥ 3:

best-known algorithm for CNF-SAT:  
𝑂(2 "@N %) where 𝑥 = Θ(1/log	(𝑀/𝑁))

[Calabro,Impagliazzo,Paturi’06]



Satisfiability Hypotheses

P ≠ NP: k-SAT not in time poly(𝑁) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3

k-SAT not in time 2>(%) ∀𝑘 ≥ 3	or	∃𝑘 ≥ 3
ETH (Exponential Time Hypothesis)

SETH (Strong Exponential Time Hypothesis)

CNF-SAT not in time 𝑂(poly 𝑀 	2 "@A %)
“CNF-SETH”

OV not in time 𝑂(poly 𝑑 	𝑛R@A)
OV-Hypothesis

⟹
⟹
⟹

⟹

[Impagliazzo,Paturi,Zane’01]

k-SAT not in time 𝑂(2 "@A %)∀𝜀 > 0:	∃𝑘 ≥ 3:



Reminder: Definition of Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

time
size 𝑠(𝑛)

reduction instance 𝐽

𝐼 is a ‘yes’-instance 𝐽 is a ‘yes’-instance()

problem 𝑷

size 𝑛

instance 𝐼

𝑟(𝑛)

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm for 𝑃

if 𝑃 has no 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm then 𝑄 has no 𝑡(𝑛) algorithm 



SETH-Hardness for OV

time 𝑂(𝑀2%/R)

reductionCNF-SAT

𝑀 clauses
𝑁 variables

𝑂(𝑛R@A	poly(𝑑)) algorithm𝑂(2 "@A/R %	poly(𝑀)) algorithm ⟸

Thm: SETH implies OVH [Williams‘05]

OV

of size 𝑛 = 2%/R
sets 𝐴,𝐵

in dimension 𝑑 = 𝑀

𝑂(𝑛R@"/`(abc d/abc	H )) algorithm𝑂(2 "@"/`(abc '/% ) %) algorithm ⟸

best-known algorithm for CNF-SAT! [Lecture 3]



SETH-Hardness for OV

time 𝑂(𝑀2%/R)

reductionCNF-SAT

𝑀 clauses
𝑁 variables

OV
sets 𝐴,𝐵

of size 𝑛 = 2%/R

in dimension 𝑑 = 𝑀

Proof:
𝑈 ∶=	assignments of 𝑥",… , 𝑥%/R

≅ 	 {1,… , 𝑛}
𝑉 ∶=	assignments of 𝑥%/Rk",… , 𝑥%

≅ 	 {1,… , 𝑛}

we say that partial assignment 𝑢 satisfies clause 𝐶

in this case we write: 𝑠𝑎𝑡(𝑢, 𝐶) = 1

iff ∃𝑖:	𝑥o is set to true in 𝑢	and 𝑥o appears unnegated in 𝐶
or ∃𝑖:	𝑥o is set to false in 𝑢	and 𝑥o appears negated in 𝐶

𝐴 = 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶" ,… , 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶' 	 	𝑢 ∈ 𝑈	}

𝐵 = 𝑢𝑛𝑠𝑎𝑡 𝑣, 𝐶" ,… , 𝑢𝑛𝑠𝑎𝑡 𝑣, 𝐶' 	 	𝑣 ∈ 𝑉	}

otherwise: 𝑠𝑎𝑡(𝑢, 𝐶) = 0

𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶 	
		≔ 1 − 𝑠𝑎𝑡(𝑢, 𝐶)



SETH-Hardness for OV

time 𝑂(𝑀2%/R)

reductionCNF-SAT

𝑀 clauses
𝑁 variables

OV
sets 𝐴,𝐵

of size 𝑛 = 2%/R

in dimension 𝑑 = 𝑀

Proof:
𝑈 ∶=	assignments of 𝑥",… , 𝑥%/R

≅ 	 {1,… , 𝑛}
𝑉 ∶=	assignments of 𝑥%/Rk",… , 𝑥%

≅ 	 {1,… , 𝑛}

we say that partial assignment 𝑢 satisfies clause 𝐶

in this case we write: 𝑠𝑎𝑡(𝑢, 𝐶) = 1

iff ∃𝑖:	𝑥o is set to true in 𝑢	and 𝑥o appears unnegated in 𝐶
or ∃𝑖:	𝑥o is set to false in 𝑢	and 𝑥o appears negated in 𝐶

𝐴 = 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶" ,… , 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶' 	 	𝑢 ∈ 𝑈	}

𝐵 = 𝑢𝑛𝑠𝑎𝑡 𝑣, 𝐶" ,… , 𝑢𝑛𝑠𝑎𝑡 𝑣, 𝐶' 	 	𝑣 ∈ 𝑉	}

otherwise: 𝑠𝑎𝑡(𝑢, 𝐶) = 0

𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶 	
		≔ 1 − 𝑠𝑎𝑡(𝑢, 𝐶)

what if we split into 𝒌 parts?

𝑈o ∶=	assignments of 𝑥(o@")%/,k",… , 𝑥o%/,
𝐴o ∶= 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶" ,… , 𝑢𝑛𝑠𝑎𝑡 𝑢, 𝐶' 	 	𝑢 ∈ 𝑈o}



SETH-Hardness for k-OV

time 𝑂(𝑀2%/,)

reductionCNF-SAT

𝑀 clauses
𝑁 variables

k-OV
sets 𝐴",… , 𝐴,

of size 𝑛 = 2%/,

in dimension 𝑑 = 𝑀

Sets 𝐴",… ,𝐴, ⊆ 0,1 d of size 𝑛

Decide whether there are 𝑎(") ∈ 𝐴",… , 𝑎(,) ∈ 𝐴,
such that ∀1 ≤ 𝑖 ≤ 𝑑:	∏ 𝑎 w

o
,
wx" = 0	

Input:

Task:

k-OrthogonalVectors:

⇔ ∀1 ≤ 𝑖 ≤ 𝑑:	∃𝑗: 	𝑎 w
o = 0

Thm: k-OV has no 𝑂(𝑛,@A) algorithm 
unless SETH fails.

[Williams,Patrascu‘10]



II. Fréchet Distance



Curve Similarity

Given two polygonal curves, how similar are they? 

✔ very similar: ✗ less similar:

Applications in: signature recognition, analysis of moving objects



Discrete Fréchet Distance

natural measure for curve similarity

rich field of research: many extensions and applications



Discrete Fréchet Distance

man and dog walk along two curves

only allowed to go forward

what is the minimum possible 
length of the leash?

in every time step: advance in one 
or both curves to the next vertex

natural measure for curve similarity

rich field of research: many extensions and applications

d
dF

(P
1

, P
2

) = min

all ways of

traversing

P1 and P2

max

time step t
distance at time t



Dynamic Program and Known Results

3.2 1.4 0.7

2.6 0.3 1.3

2.5 0.7 2.2

2.0 0.4 2.2

0.8 1.8 2.8

0.5 2.1 3.2

P1

P2

natural dynamic programming algorithm: 𝑂(𝑛R)

𝑇 𝑖, 𝑗 = 𝑑|}(𝑃" 1. . 𝑖 , 𝑃R 1. . 𝑗 )

𝑇 𝑖, 𝑗 = max	{ 𝑃" 𝑖 − 𝑃R 𝑗 ,
min 𝑇 𝑖 − 1, 𝑗 , 𝑇 𝑖, 𝑗 − 1 , 𝑇[𝑖 − 1, 𝑗 − 1] }

= current distance

last step in 𝑃" last step in 𝑃R last step in both

logfactor improvement:  𝑂(𝑛R abc abc H
abc H

)
[Agarwal,Avraham,Kaplan,Sharir’13]



OV-Hardness Result

time 𝑂(𝑑𝑛)

reductionOV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 d

𝑂(𝑛R@A) algorithm𝑂(𝑛R@Apoly(𝑑)) algorithm ⟸

Thm: Fréchet distance has no 𝑂(𝑛R@A) algorithm 
unless the OV-Hypothesis fails.

[B.‘14]

Fréchet distance

𝑂(𝑑𝑛) vertices
curves 𝑃",𝑃R



Proof: Vector Gadgets

for 𝑎 ∈ 𝐴:
VG(𝑎)

1 2 … 𝑑
𝑎o = 1
𝑎o = 0

1/2
1/(16𝑑2)

1

for 𝑏 ∈ 𝐵:
VG(𝑏)

✔ ✔ ✔ ✖ ✖
𝑑𝑑𝐹(VG(𝑎), VG(𝑏)) ≤ 1

iff 𝑎 ⊥ 𝑏

for 𝑎, 𝑎’ ∈ 𝐴:  VG(𝑎) and VG(𝑎’) are 
“on top of each other”

𝑏o = 1
𝑏o = 0

OV Fréchet distance
𝑛 vectors, dimension 𝑑

reduction

𝑂(𝑑𝑛) verticestime 𝑂(𝑑𝑛)

cross distances:

(1 − 2/16𝑑2)R+(1/2𝑑)R

= 1+ (2/16𝑑2)R > 1



OV Fréchet distance
𝑛 vectors, dimension 𝑑

reduction

𝑂(𝑑𝑛) verticestime 𝑂(𝑑𝑛)

final curves:
𝑃1	 = 	𝑠1	– 	𝑟1	–VG(𝐴[1])	– 	𝑡1	– 	…	

– 	𝑠1	– 	𝑟1	–VG(𝐴	[𝑛])	– 	𝑡1

𝑃2	 = 	𝑠2	–	𝑠R∗

– 	𝑟2	–VG(𝐵[1])	– 	…
– 	𝑟2	–VG(𝐵[𝑛])
–	𝑡R∗	– 	𝑡2

Fréchet distance ≤ 1 iff 	∃𝑎, 𝑏: 𝑎 ⊥ 𝑏

Proof: OR-Gadget

𝑟1

𝑠1
𝑠2

𝑠R∗ 𝑡R∗

𝑡2
𝑡1

𝑟2

we add some control points s.t.:



Proof: Correctness

let 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 with 𝑎 ⊥ 𝑏“(”:

stay at 𝑠2 and walk to the 𝑎1-copy of 𝑠1
stay at 𝑠1 and walk to the 𝑎2-copy of 𝑟2
step to 𝑟1
walk through 𝑉𝐺(𝑎1), 𝑉𝐺(𝑎2) in parallel
step to 𝑡1
stay at 𝑡1 and walk to 𝑡2
𝑃2 is completely traversed, now finish 
traversing 𝑃1

OV Fréchet distance
𝑛 vectors, dimension 𝑑

reduction

𝑂(𝑑𝑛) verticestime 𝑂(𝑑𝑛)

Fréchet distance ≤ 1 iff 	∃𝑎, 𝑏: 𝑎 ⊥ 𝑏

𝑠1
𝑠2

𝑠R∗ 𝑡R∗

𝑡2
𝑡1

𝑟2

𝑟1



Proof: Correctness

consider a traversal staying in distance 1

when at 𝑠R∗: have to be at 𝑠1 (say at 𝑎-copy)

after that, at first time we are at 𝑟1:
could be at 𝑠2, 𝑡2, or 𝑟2
𝑠2: already passed

in the following we have to traverse 
VG(𝑎), VG(𝑏) in parallel

“)”:

𝑡2: not reachable because of 𝑡R∗

so have to be at 𝑟2 (say at 𝑏-copy)

this is only possible if 𝑎 ⊥ 𝑏

𝑟1

𝑠1
𝑠2

𝑠R∗ 𝑡R∗

𝑡2
𝑡1

𝑟2

OV Fréchet distance
𝑛 vectors, dimension 𝑑

reduction

𝑂(𝑑𝑛) verticestime 𝑂(𝑑𝑛)

Fréchet distance ≤ 1 iff 	∃𝑎, 𝑏: 𝑎 ⊥ 𝑏



OV-Hardness Result

Fréchet distance

time 𝑂(𝑑𝑛)

reductionOV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 d

𝑂(𝑑𝑛) vertices

𝑂(𝑛R@A) algorithm𝑂(𝑛R@Apoly(𝑑)) algorithm ⟸

Thm: Fréchet distance has no 𝑂(𝑛R@A) algorithm 
unless the OV-Hypothesis fails.

[B.‘14]

curves 𝑃",𝑃R



Inapproximability

Thm: Fréchet distance has no 1.001-approximation 
in time 𝑂 𝑛R@A unless the OV-Hypothesis fails.

[B.‘14]

Q: improve constant

different construction yields 1.399-inapproximability [B.,Mulzer‘15]

Thm: Fréchet distance has has an 𝛼-approximation 
in time 𝑂 𝑛R/𝛼 + 𝑛 log𝑛

[B.,Mulzer‘15]

Q: close this gap



Inapproximability

replace by:
1,3,5,… 2,4,…

we still have to walk in parallel 
through vector gadgets!

Proof Idea:

Thm: Fréchet distance has no 1.001-approximation 
in time 𝑂 𝑛R@A unless the OV-Hypothesis fails.

[B.‘14]

for 𝑎 ∈ 𝐴:
VG(𝑎)

1 2 … 𝑑
𝑎o = 1
𝑎o = 0



Inapproximability

Proof Idea:

Thm: Fréchet distance has no 1.001-approximation 
in time 𝑂 𝑛R@A unless the OV-Hypothesis fails.

[B.‘14]

construction has a fixed (constant) set of points

if 𝑑𝑑𝐹(𝑃1, 𝑃2) > 1 then 𝑑𝑑𝐹(𝑃1, 𝑃2) > 1.001

minimal distance between any pair of points in 
distance > 1 in 𝑃1 and 𝑃2 is 𝑪 > 𝟏. 𝟎𝟎𝟏	

thus any 1.001-approximation of the 
Fréchet distance can decide OV



Generalizations

Fréchet distance has no 𝑂(𝑛R@A) algorithm unless OVH fails
even on one-dimensional curves [B.,Mulzer‘15]

A generalization to 𝒌 curves has no 𝑂(𝑛,@A) algorithm unless 
OVH fails (for curves in the plane)

[Buchin,Buchin,Konzack,Mulzer,Schulz‘16]

Q: Ω(𝑛,@A) lower bound for 𝑘 one-dimensional curves

continuous Fréchet distance:
Q: Ω(𝑛R@A) lower bound for one-dimensional curves
Q: Ω(𝑛,@A) lower bound for k curves



III. Longest Common Subsequence



Longest Common Subsequence (LCS)

given strings 𝑥, 𝑦 of length 𝑛 ≥ 𝑚, compute longest string 𝑧 that is a 
subsequence of both 𝑥 and 𝑦

natural dynamic program 𝑂(𝑛R)

a b b c a d

a c d a a b d

𝑥[1] 			… 			𝑥[𝑛]
𝑦[1]			

…

𝑦[𝑚]			

𝑇[𝑖, 𝑗] 	= 	m𝑎𝑥	{	𝑇 𝑖 − 1, 𝑗 , 𝑇[𝑖, 𝑗 − 1]}

delete in 𝑥 delete in 𝑦

match

if 𝑥 𝑖 = 𝑦[𝑗]:
𝑇[𝑖, 𝑗] 	= 	m𝑎𝑥	{𝑇 𝑖, 𝑗 , 𝑇 𝑖 − 1, 𝑗 − 1 + 1}

logfactor improvement:

[Masek,Paterson’80]

𝑇[𝑖, 𝑗] 	=	
𝐿𝐶𝑆(𝑥[1. . 𝑖], 𝑦[1. . 𝑗])

𝑂(𝑛R/	logR	𝑛)

write 𝐿𝐶𝑆 𝑥, 𝑦 = |𝑧|



OV-Hardness Result

LCS

time 𝑂(𝑑R𝑛)

reductionOV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 d

of length 𝑂(𝑑R𝑛)

𝑂(𝑛R@A) algorithm𝑂(𝑛R@Apoly(𝑑)) algorithm ⟸

Thm: Longest Common Subsequence
has no 𝑂(𝑛R@A) algorithm unless the OV-Hypothesis fails.

[B.,Künnemann’15+
Abboud,Backurs,V-Williams‘15]

strings 𝑥, 𝑦



Proof: Coordinate Gadgets

1� ∶= 1110� ∶= 001

1� ∶= 0000� ∶= 011

𝐿𝐶𝑆(𝑎o �,𝑏o
�) can be written as 𝑓(𝑎o � 𝑏o), with 𝑓 0 > 𝑓 1

we want to simulate the coordinates {0,1} and the behavior of 𝑎o � 𝑏o

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

𝐿𝐶𝑆 = 0𝐿𝐶𝑆 = 2

replace 𝑎o by 𝑎o � and 𝑏o by 𝑏o
�



Proof: Vector Gadgets

we want to simulate orthogonality of 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

concatenate 𝑎"�,… , 𝑎d�, padded with a new symbol 2

𝑉𝐺 𝑎 ∶= 𝑎"�	2…2	𝑎R�	2…2	𝑎��	2… 2	𝑎 �

𝑉𝐺 𝑏 ∶= 𝑏"
�	2 …2	𝑏R

�	2 …2	𝑏�
�	2…2	𝑏 

�

length 4𝑑

- no LCS matches symbols in 𝑎o � with symbols in 𝑏w
� where 𝑖 ≠ 𝑗

in the picture: 𝑑 = 4



Proof: Vector Gadgets

we want to simulate orthogonality of 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

concatenate 𝑎"�,… , 𝑎d�, padded with a new symbol 2

𝑉𝐺 𝑎 ∶= 𝑎"�	2…2	𝑎R�	2…2	𝑎��	2… 2	𝑎 �

𝑉𝐺 𝑏 ∶= 𝑏"
�	2 …2	𝑏R

�	2 …2	𝑏�
�	2…2	𝑏 

�

length 4𝑑

- no LCS matches symbols in 𝑎o � with symbols in 𝑏w
� where 𝑖 ≠ 𝑗

assume otherwise
then we could match ≤ 𝑑 − 2 4𝑑 symbols 2 and		≤ 3𝑑 symbols 0/1
but 𝐿𝐶𝑆 𝑉𝐺 𝑎 , 𝑉𝐺 𝑏 ≥ 𝑑 − 1 4𝑑 > 𝑑 − 2 4𝑑 + 3𝑑



Proof: Vector Gadgets

we want to simulate orthogonality of 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

concatenate 𝑎"�,… , 𝑎d�, padded with a new symbol 2

𝑉𝐺 𝑎 ∶= 𝑎"�	2…2	𝑎R�	2…2	𝑎��	2… 2	𝑎 �

𝑉𝐺 𝑏 ∶= 𝑏"
�	2 …2	𝑏R

�	2 …2	𝑏�
�	2…2	𝑏 

�

- no LCS matches symbols in 𝑎o � with symbols in 𝑏w
� where 𝑖 ≠ 𝑗

- some LCS matches all 2‘s



Proof: Vector Gadgets

we want to simulate orthogonality of 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

concatenate 𝑎"�,… , 𝑎d�, padded with a new symbol 2

𝑉𝐺 𝑎 ∶= 𝑎"�	2…2	𝑎R�	2…2	𝑎��	2… 2	𝑎 �

𝑉𝐺 𝑏 ∶= 𝑏"
�	2 …2	𝑏R

�	2 …2	𝑏�
�	2…2	𝑏 

�

- 𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 = 𝑑 − 1 4𝑑 +	∑ 𝐿𝐶𝑆(𝑎o �, 𝑏o
�)d

ox"

#2‘s

=𝑓(𝑎o � 𝑏o)

𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 = 𝐶 + 2
𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 ≤ 𝐶

if 𝑎 ⊥ 𝑏
otherwise

where 𝐶 = 𝑑 − 1 4𝑑 + 2𝑑 − 2



Proof: Normalized Vectors Gadgets

add a (𝑑 + 1)-st coordinate:

aim for max	{𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 , 𝐿𝐶𝑆 𝑉𝐺 𝑠 , 𝑉𝐺 𝑏 }

this takes only 2 values, depending on whether 𝑎 ⊥ 𝑏

𝑎dk" ≔ 0
𝑏dk" ≔ 1

𝑠 ≔ 0,… , 0,1 ∈ {0,1}dk"
define vector:

𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 ≤ 𝐶
𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 = 𝐶 + 2 if 𝑎 ⊥ 𝑏

otherwise

still holds:  ∃𝐶:

this does not change 𝑎 ⊥ 𝑏

𝐿𝐶𝑆 𝑉𝐺 𝑠 ,𝑉𝐺 𝑏 = 𝐶

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0



Proof: Normalized Vectors Gadgets

new vector gadgets:

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

𝑉𝐺 𝑎 		4…4		𝑉𝐺(𝑠) 𝑉𝐺 𝑎 		4…4		𝑉𝐺(𝑠)

4… 4		𝑉𝐺 𝑏 		4 …4 4… 4		𝑉𝐺 𝑏 		4 …4

𝑉𝐺′ 𝑎 :

𝑉𝐺′ 𝑏 :

𝐿𝐶𝑆(𝑉𝐺¤ 𝑎 , 𝑉𝐺¤ 𝑏 ) = 10𝑑R + max	{𝐿𝐶𝑆 𝑉𝐺 𝑎 ,𝑉𝐺 𝑏 , 𝐿𝐶𝑆 𝑉𝐺 𝑠 ,𝑉𝐺 𝑏 }

length 10𝑑R

𝐿𝐶𝑆(𝑉𝐺¤ 𝑎 , 𝑉𝐺¤ 𝑏 ) =
𝐶¤ + 2

𝐶¤
if 𝑎 ⊥ 𝑏
otherwise

write 𝑉𝐺 for 𝑉𝐺‘



Proof: OR-Gadget

fresh symbol 3, want to construct: 

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

in the picture: 𝑛 = 3

𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺 𝐴 3 	3…3	𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺(𝐴 3 )

3……………3	𝑉𝐺 𝐵 1 	3… 3	𝑉𝐺 𝐵 2 	3… 3	𝑉𝐺 𝐵 3 	3……………3

length 100𝑑R length 100𝑑R � 2𝑛



Proof: OR-Gadget

fresh symbol 3, want to construct: 

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

in the picture: 𝑛 = 3

can align 𝑉𝐺(𝐵 𝑗 ) with 𝑉𝐺(𝐴 Δ + 𝑗	mod	𝑛 ) for any offset Δ

𝐿𝐶𝑆 ≥ 2𝑛 − 1 100𝑑R +max
¨
∑ 𝐿𝐶𝑆(𝑉𝐺 𝐴 Δ + 𝑗	mod	𝑛 ,𝑉𝐺 𝐵 𝑗 )H
wx"

If there is an orthogonal pair, some offset Δ	 aligns this pair, and we get

#3‘s in upper string maximize over offset

𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺 𝐴 3 	3…3	𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺(𝐴 3 )

3……………3	𝑉𝐺 𝐵 1 	3… 3	𝑉𝐺 𝐵 2 	3… 3	𝑉𝐺 𝐵 3 	3……………3

𝐿𝐶𝑆 ≥ 2𝑛 − 1 100𝑑R + 𝑛𝐶 + 2

need normalization!



Proof: OR-Gadget

fresh symbol 3, want to construct: 

OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each
Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

in the picture: 𝑛 = 3

if an orthogonal pair exists then 

𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺 𝐴 3 	3…3	𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺(𝐴 3 )

3……………3	𝑉𝐺 𝐵 1 	3… 3	𝑉𝐺 𝐵 2 	3… 3	𝑉𝐺 𝐵 3 	3……………3

𝐿𝐶𝑆 ≥ 2𝑛 − 1 100𝑑R + 𝑛𝐶 + 2

Claim: otherwise: 𝐿𝐶𝑆 ≤ 2𝑛 − 1 100𝑑R + 𝑛𝐶

✔ equivalent to OV instance

✔ length 𝑂(𝑑R𝑛)

this finishes the proof:



OV-Hardness Result

LCS

time 𝑂(𝑑R𝑛)

reductionOV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 d

of length 𝑂(𝑑R𝑛)

𝑂(𝑛R@A) algorithm𝑂(𝑛R@Apoly(𝑑)) algorithm ⟸

Thm: Longest Common Subsequence
has no 𝑂(𝑛R@A) algorithm unless the OV-Hypothesis fails.

[B.,Künnemann’15+
Abboud,Backurs,V-Williams‘15]

strings 𝑥, 𝑦



Proof of Claim
OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each

Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺 𝐴 3 	3…3	𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺(𝐴 3 )

3……………3	𝑉𝐺 𝐵 1 	3… 3	𝑉𝐺 𝐵 2 	3… 3	𝑉𝐺 𝐵 3 	3……………3

Claim: if no orthogonal pair exists: 𝐿𝐶𝑆 ≤ 2𝑛 − 1 100𝑑R + 𝑛𝐶

consider how an LCS matches the 𝑉𝐺(𝐵[𝑗])
- no crossings



Proof of Claim
OV: Given 𝐴,𝐵 ⊆ {0,1}d of size 𝑛 each

Are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that ∀𝑖:		𝑎o � 𝑏o = 0

𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺 𝐴 3 	3…3	𝑉𝐺 𝐴 1 	3…3	𝑉𝐺 𝐴 2 	3…3	𝑉𝐺(𝐴 3 )

3……………3	𝑉𝐺 𝐵 1 	3… 3	𝑉𝐺 𝐵 2 	3… 3	𝑉𝐺 𝐵 3 	3……………3

Claim: if no orthogonal pair exists: 𝐿𝐶𝑆 ≤ 2𝑛 − 1 100𝑑R + 𝑛𝐶

𝐿𝐶𝑆 ≤ 2𝑛 − 1 100𝑑R +©
H

ox"

0

𝑉𝐺 𝐵 𝑗
−|3 …3|

if 𝑉𝐺(𝐵 𝑗 ) is not matched

if 𝑉𝐺(𝐵 𝑗 ) is matched to > 1#3‘s in upper string

non-orthogonal

could match VG completely, but loose many 3‘s
≤ 0

𝐶 if 𝑉𝐺(𝐵 𝑗 ) is matched to one



Extensions

similar problems:

edit distance

dynamic time warping

...

alphabet size:

longest common subsequence and edit distance
are even hard on binary strings, i.e., alphabet {0,1}

longest common subsequence of 𝒌 strings takes time Ω(𝑛,@A)



Summary

reduction SETH → OV 

introduced k-OV 

OV-hardness for Fréchet distance

OV-hardness for longest common subsequence


