' ' I I max planck institut
informatik

Complexity Theory of
Polynomial-Time Problems

Lecture 2: SETH and OV

Karl Bringmann

Tuesday, 16:15 - 18:

Tutorial Slot

00

works for everybody?

alternative time slot:

Mo
10-12 -
12-14
14-16
16-18

Tue

Wed Thu

current

LT U EE

Fri

new

l. SETH

l l I I L max planck institut
informatik

Satisfiability Problem

(5(31 V =9 V $4) A\ (5133 V —|$3)/\

(_1331 V o V I3 V 5134)

CNF-SAT: boolean variables x4, ..., xy - varlable_or
negated variable
clauses C4,...,Cy are an OR over literals

decide whether an assignment of x4, ..., x,y satisfies ALL clauses

unbounded clause width
:i = number of literals per clause]

k-SAT: clause width bounded by k
thus M < N¥

l l I I max planck institut
informatik

Satisfiability Hypotheses

P #NP: k-SAT not in time poly(N) Vk >3o0ordk =3
ETH (Exponential Time Hypothesis) [Impagliazzo,Paturi,Zane'01]
k-SAT not in time 2°M) Vk >3or3dk >3

SETH (Strong Exponential Time Hypothesis)
Ve>0:3k>3: k-SAT notin time 0(2(1-9N)

best-known algorithm for k-SAT: 0(2(1=¢x)") where ¢, = 0(1/k)
[Paturi,Pudlak,Saks,Zane’98]

l l I I max planck institut
informatik

Satisfiability Hypotheses

P #NP: k-SAT not in time poly(N) Vk >3o0ordk =3
ETH (Exponential Time Hypothesis) [Impagliazzo,Paturi,Zane’01]
k-SAT not in time 2°M) Vk >3or3k >3

SETH (Strong Exponential Time Hypothesis)
Ve>0:3k>3: k-SAT notin time 0(2(1-9N)

“CNF-SETH”
CNF-SAT not in time O (poly(M) 2(1-aN)

best-known algorithm for CNF-SAT: [Calabro,Impagliazzo,Paturi’06]
020Ny where x = 0(1/log(M/N))

l l I I max planck institut
informatik

Satisfiability Hypotheses

P #NP: k-SAT not in time poly(N) Vk >3o0ordk =3
ETH (Exponential Time Hypothesis) [Impagliazzo,Paturi,Zane’01]
k-SAT not in time 2°M) Vk >3or3k >3

SETH (Strong Exponential Time Hypothesis)
Ve>0:3k>3: k-SAT notin time 0(2(1-9N)

“CNF-SETH”
CNF-SAT not in time O (poly(M) 2(1-aN)

OV-Hypothesis U
OV not in time O (poly(d) n?~¢)

l l I I max planck institut
informatik

Reminder: Definition of Reductions

transfer hardness of one problem to another one by reductions

problem P problem Q
instance I reduction instance J
> TR,
time
size n size s(n)

I is a ‘yes’-instance — J is a ‘yes’-instance

t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm

l l I I max planck institut
informatik

SETH-Hardness for OV

CNF-SAT reduction ov
M clauses time 0 (M2N/?) of size n =2

in dimension d = M

0 (2(1=€/2)N poly(M)) algorithm = 0 (n*~¢ poly(d)) algorithm
Thm: SETH implies OVH [Willams 03]

0 (2(1=1/00ogM/N))NY glgorithm = 0 (n2~1/00ogld/logn))y glgorithm

best-known algorithm for CNF-SAT! [Lecture 3]

l l I I max planck institut
informatik

SETH-Hardness for OV

CNF-SAT reduction oV
N variables —— ?ets A, B
M clauses time 0 (M2N/2) of size n = 2N/2
in dimension d = M
Proof:
U :=assignments of x, ..., Xy /2 V :=assignments of xy /541, ..., Xy

= {1,..,n} = {1,..,n}
we say that partial assignment u satisfies clause C

iff 3i: x; is set to true in u and x; appears unnegated in C
or 3i: x; is set to false in u and x; appears negated in C

in this case we write: sat(u,C) =1 otherwise: sat(u,C) =0
unsat (u, C) A= {(unsat(u,Cl),...,unsat(u, CM)) | u€ U}
=1 —sat(u,)

il p B oo planck it B = {(unsat(v, Cy),...,unsat(v, CM)) | veV}

SETH-Hardness for OV

CNF-SAT reduction tOV
N Variables ﬁ f Se S A’ BZN/Z
: of size n =
M clauses time 0(M2"/?) . .
in dimension d = M
Proof:
U := assignments of x4, ..., Xy /2 V :=assignments of xy /541, ..., Xy
we sa what if we split into k parts?
iff 3 U; :=assignments of x;_1yn/k+1, - Xin/k
or 3 A; = {(unsat (u,Cq), ...,unsat (u, CM)) | u € U;}
in thiS >VVU \A AR LAY %A% T, G X OTTr1CoT mmwrru,—w—!o
unsat (u, C) A= {(unsat(u,Cl),...,unsat(u, CM)) | u€ U}
=1 —sat(u,)

il p B oo planck it B = {(unsat(v, Cy),...,unsat(v, CM)) | veV}

SETH-Hardness for k-OV

CNF-SAT reduction k-OV

N Variables ﬁ SetS Al') Ak

i _ 9N/k
M clauses time 0 (M2N/%) of size n = 2
in dimension d = M

k-OrthogonalVectors:
Input: Sets A4,...,A; €{0,1}4 of size n

Task: Decide whether there are a¥ € 44,...,a®™ € 4,
such that vl <i <d: [[¥.;a¥; =0

o VvVl<i<d: 3 a(j)l-ZO

Thm: k.OV has no 0(n*~¢) algorithm [Williams, Patrascl10]
unless SETH fails.

l l I I max planck institut
informatik

Il. Fréchet Distance

l l I I L max planck institut
informatik

Curve Similarity

Given two polygonal curves, how similar are they?

v/ very similar: X less similar:

Applications in: signature recognition, analysis of moving objects

l l I I I max planck institut
informatik

Discrete Fréchet Distance

natural measure for curve similarity

rich field of research: many extensions and applications A X

l l I I max planck institut
informatik

Discrete Fréchet Distance

natural measure for curve similarity

rich field of research: many extensions and applications A X

ddF(P17P2) —

IIIIJIL’“

man and dog walk along two curves
only allowed to go forward

in every time step: advance in one
or both curves to the next vertex

what is the minimum possible
length of the leash?

min max distance at time ¢
all ways of time step ¢

traversing
P, and Ps

plnknttut

nformatik

Dynamic Program and Known Results

3.2 14))&7

2.6 of 1.3

2.0)14 2.2

o(1828

natural dynamic programming algorithm: 0 (n*) ols | 2.1]3.2
Tli,j] = dpr(P1[1..1], P2 [1..j]) P,

A = current distance]
Tli, j1 = max{||P.[i] — P, [/1II,
min{T[i —1,j], T[i,j — 1], T[i — 1,j — 1]1}}

A

[Iast step in P1] [Iast stepin P,] [last step in both]

logfactor improvement: 0 (n? 28287

lleIUmfplnk nstitut logn
rmati

[Agarwal,Avraham,Kaplan,Sharir’13]

OV-Hardness Result

ovVv Fréchet distance

reduction
sets A, B C {0,1}¢ =—— curves Py, P,
of size n time 0 (dn) 0(dn) vertices
0 (n?¢poly(d)) algorithm = 0 (n*~¢) algorithm
Thm: Fréchet distance has no 0(n?~¢) algorithm [814]

unless the OV-Hypothesis fails.

l l I I max planck institut
informatik

Proof: Vector Gadgets

oV reduction Fréchet distance
n vectors, dimension d time 0(dn) O(dn) vertices
1 2 d

fora € A:

o
Ve T oI

' o d,-(VG(a),VG(b)) < 1
* ¥ iff a L b

|

|

|

|

|
(V4

|

|

|

|

: cross distances:

: i >m bi =0
fo\;(f(lf)B- ak — hy=1 (1 —2/16d%)%+(1/2d)?

for a,a’ € A: VG(a) and VG(a) are =1+ (2/16d%)?% > 1
“on top of each other”
il IJI B 2 planck institt

Proof: OR-Gadget

oV reduction

n vectors, dimension d time 0(dn)

we add some control points s.t.:

Fréchet distance < 1 iff 3a,b:a L b

final curves:
Py = s1-1r;-VG(A[1]) - ¢, -
- s1- 1 -VG(A[n]) - t

P, = s,-55"
- r,-VG(B[1]) -
- 1,-VG(B[n])
-t - ¢

lleIme‘;}?" i

Fréchet distance
O(dn) vertices

rq
S1 tq
S, ® ® tz
r;
SZ* tz*

Proof: Correctness

oV reduction Fréchet distance
n vectors, dimension d time 0(dn) O(dn) vertices
Fréchet distance < 1 iff 3a,b:a L b T

“<": letae A beBwithalb

stay at s, and walk to the a,-copy of s, S1 ty
stay at s, and walk to the a,-copy of 7, S, ® iz
steptor,

walk through VG (a,),VG(a,) in parallel

step to ¢, T2

stay at £, and walk to ¢,

P, is completely traversed, now finish
traversing P,

IIIIJI hlormac

Proof: Correctness

oV reduction Fréchet distance

n vectors, dimension d time 0(dn) O(dn) vertices

Fréchet distance < 1 iff 3a,b:a L b

“=-": consider a traversal staying in distance 1
when at s,*: have to be at s, (say at a-copy)

after that, at first time we are at r:

could be at s,, t,, orr,
s,. already passed

t,: not reachable because of ¢, "
so have to be at r, (say at b-copy)

in the following we have to traverse
VG(a),VG(b) in parallel

this is only possible if a L b
LT VL LR

rq
S1 t,
s, ® ®t
T
Sz* tz*

OV-Hardness Result

ovVv Fréchet distance

reduction
sets A, B C {0,1}¢ =—— curves Py, P,
of size n time 0 (dn) 0(dn) vertices
0 (n?¢poly(d)) algorithm = 0 (n*~¢) algorithm
Thm: Fréchet distance has no 0(n?~¢) algorithm [814]

unless the OV-Hypothesis fails.

l l I I max planck institut
informatik

Inapproximability

Thm: Freéchet distance has no 1.001-approximation [B14]
in time 0(n?~¢) unless the OV-Hypothesis fails.
different construction yields 1.399-inapproximability [B.,Mulzer'15]
Q: improve constant
[B.,Mulzer15]

Thm: Fréchet distance has has an a-approximation
in time 0(n?/a + nlogn)

Q: close this gap

l l I I max planck institut
informatik

Inapproximability

Thm: Fréchet distance has no 1.001-approximation [B.14]

in time 0(n?~¢) unless the OV-Hypothesis fails.

Proof Idea:
for a € A: La 4
. «— a; =
VG((Z) ><\/_>< P a; =
1,3,5,... 2,4,... ¢

replace by: P

we still have to walk in parallel
through vector gadgets!

lleImeﬁ}?" i

Inapproximability

Thm: Fréchet distance has no 1.001-approximation [B.14]

in time 0(n?~¢) unless the OV-Hypothesis fails.

Proof ldea:

construction has a fixed (constant) set of points

minimal distance between any pair of points in
distance > 1in P,and P, is C > 1.001

if d;z(P,,P,)>1thend,z.(P,,P,) >1.001

thus any 1.001-approximation of the
Fréchet distance can decide OV

l l I I max planck institut
informatik

Generalizations

Fréchet distance has no 0(n?~¢) algorithm unless OVH fails
even on one-dimensional curves [B.,Mulzer'15]

—_———

A generalization to k curves has no 0(n*~¢) algorithm unless

OVH fails (for curves in the plane)
[Buchin,Buchin,Konzack,Mulzer,Schulz'16]

Q: Q(n*~%) lower bound for k one-dimensional curves

continuous Fréchet distance:
Q: Q(n?~¢) lower bound for one-dimensional curves

Q: Q(n*~¢) lower bound for k curves
LT VL LR

lll. Longest Common Subsequence

l l I I max planck institut
informatik

Longest Common Subsequence (LCS)

given strings x, y of length n = m, compute longest string z thatis a
subsequence of both x and y
write LCS(x,y) = |z|

X&C a d\
_4}4‘ Tli, j] = cXKa X
LCS(x[1..i],y[1..]])

| delete in x l | delete in y l
: : ;i logfactor improvement:

T[i,j] = max{T[i—1,j],T[i,j — 1]}
if x[i] = y[j]: 0(n?/ log?n)
T[i,j] = max{T[i,j.T[i —1,j —1] +1} [Masek,Paterson’80]

lleIme‘;}?" match

natural dynamic program 0 (n?)

- <
- |
p—
| S—

Q —Q

OV-Hardness Result

ov reduction LCS
sets A, B C {0,1}¢ =—— strings x,y
of size n time 0(d*n) of length 0(d?n)
0 (n?¢poly(d)) algorithm = 0 (n*~¢) algorithm
Thm: [B.,Kinnemann'15+
m Longest Common Subsequence Abboud,Backurs,V-Williams‘15]

has no 0(n*~¢) algorithm unless the OV-Hypothesis fails.

l l I I max planck institut
informatik

Proof: Coordinate Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

we want to simulate the coordinates {0,1} and the behavior of a; - b;

04 := 001 14 := 111
LCS=2‘ >< ILCS:
o)
1,05
0B := 011 1B := 000

replace a; by a;4 and b; by b;”

LCS(a;%,b;") can be written as f(a; - b;), with £(0) > (1)

l l I I ‘ max planck institut
informatik

Proof: Vector Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

we want to simulate orthogonality ofa € A,b € B In the picture: d = 4

concatenate a;4, ..., az 4, padded with a new symbol 2 length 4d

VG(a) :=a;42..2a,42..2a3%2..2a,2
I N e
VG(b) :=b°2..2b,°2..2b3°2...2b,°

- no LCS matches symbols in a;# with symbols in bjB where [# j

lleIme‘;}?" i

Proof: Vector Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

we want to simulate orthogonality of a € A,b € B

concatenate a;4, ..., az 4, padded with a new symbol 2 length 4d

VG(a) :== a4 2. Zaz‘-a 2..2a,"
-]

VG(b) :=b,"2.. ZbZB-b 2..2b,"

- no LCS matches symbols in a;4 with symbols in bjB where i # j
assume otherwise
then we could match < (d — 2)4d symbols 2 and < 3d symbols 0/1

but LCS(VG(a),VG (b)) = (d — 1)4d > (d — 2)4d + 3d

LT U EE

Proof: Vector Gadgets
OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

we want to simulate orthogonality of a € A,b € B

concatenate a; 4, ..., ag4, padded with a new symbol 2

VG(a) :=a;42..2a,42..2a3%2...2a,
I N e
VG(b) :=b°2..2b,°2..2b3°2...2b,°

- no LCS matches symbols in a;# with symbols in bjB where [# j

- some LCS matches all 2's

IIIIJI hlormac

Proof: Vector Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

we want to simulate orthogonality of a € A,b € B

concatenate a; 4, ..., ag4, padded with a new symbol 2

VG(a) :=a;42..2a,42..2a3%2...2a,
I N e
VG(b) :=b°2..2b,°2..2b3°2...2b,°

- LCS(VG(a),VG(b)) = (d — D4d + X, LCS(a;4, b)<{_f(al b;)]

LCS(VG(a),VG(b)) =C+2 ifalb

LcS(VG(a), VG(b)@c otherwise
where C = (d —1)4d + 2d — 2

lleIme‘;}?" i

Proof: Normalized Vectors Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

add a (d + 1)-st coordinate: still holds: 3C:
ag+q =10 LCS(VG(a),VG(b))=C+2 ifalb
bgy1 =1 LcS(VG(a),VG(b)) < C otherwise

this does not change a L b
define vector:

s = (0,...,0,1) € {0,1}4+1 LCS(VG(s),VG(b)) =C

aim for max{LCS(VG(a),VG (b)), LCS(VG(s),VG(b))}

this takes only 2 values, depending on whether a 1 b

l l I I max planck institut
informatik

Proof: Normalized Vectors Gadgets

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVi: a; -b; =0

new vector gadgets: }ngth 1Od2]

V6'(@): [MG(@) 4.4 VG(s) VG(a) 4.4 WGE)

h

VG'(b): 4..4 VG(b) @54 A VGDb) 4.4

LCS(VG'(a), VG'(b)) = 10d? + max{LCS(VG(a),VG (b)), LCS(VG(s),VG(b))}

C'+2 ifalb
C' otherwise

LCS(VG'(a), VG' (b)) = {

ll|p||mfg}tk write VG for VG

Proof: OR-Gadget

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a; -b; =0

fresh symbol 3, want to construct: In the picture: n = 3

VG(A[1]) 3..3VG(A[2]) 3..3VG(A[3]) 3..3VG(A[1]) 3..3VG(A[2]) 3...3VG(A[3])

3 i . 3VG(BI[1])3...3VG(B[2])3...3VG(BI[3]) 3. iive e 3

A
[length 100d2] [Iength 100d2 - 2n

l l I I max planck institut
informatik

Proof: OR-Gadget

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a; -b; =0

fresh symbol 3, want to construct: In the picture: n = 3

3 3VG(A[3]) 3...3VG(A[1]) 3..3 VG (A[2])3...3-

\IIII

3VG(B[1])3..3VG(B[2])3..3VGB[3]) 3 ... [8]

can align VG(B[j]) with VG(A[A + j mod n]) for any offset A
LCS > (2n—1)100d? + mAaxZ}f‘zlLCS(VG(A[A + jmodn]),VG(B[jD)

[#3 s in upper/strm maximize over offset] need normalization!]

If there is an orthogonal pair, some offset A aligns this , and we get

LT U EE LCS = (2n — 1)100d? + nC + 2

Proof: OR-Gadget

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a; -b; =0

fresh symbol 3, want to construct: In the picture: n = 3

3 3VGAIBD 3...3VG(A[1]) 3..3VG(A[2])3...3-

\IIII

3VG(B[1])3..3VG(B[2])3..3VG(B[3])3 a3

if an orthogonal pair exists then LCS > (2n —1)100d? + nC + 2

Claim: otherwise: LCS < (2n —1)100d? + nC

this finishes the proof: ¢ equivalent to OV instance
v length 0(d?n)
inl pl | i

OV-Hardness Result

ov reduction LCS
sets A, B C {0,1}¢ =—— strings x,y
of size n time 0(d*n) of length 0(d?n)
0 (n?¢poly(d)) algorithm = 0 (n*~¢) algorithm
Thm: [B.,Kinnemann'15+
m Longest Common Subsequence Abboud,Backurs,V-Williams‘15]

has no 0(n*~¢) algorithm unless the OV-Hypothesis fails.

l l I I max planck institut
informatik

Proof of Claim

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a; -b; =0

Claim: if no orthogonal pair exists: LCS < (2n —1)100d? + nC

VG(A[1]) 3...3VG(A]2]) 3..3VG(A[3]) 3..3VG(A[1]) 3..3VG(A[2]) 3...3VG(A[3))

T——

3. 3VG(B[1])3..3VG(B[2])3..3VG(BI3])3 i vi e 3

consider how an LCS matches the VG (B[j])

- NO crossings

lllpllmf‘;}?“ it

Proof of Claim

OV: Given 4,B ¢ {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a; -b; =0

Claim: if no orthogonal pair exists: LCS < (2n —1)100d? + nC

VG(A[1]) 3.3 VG (A[2]) 3...3 VG (A[3]) B3 VG (A[1]) 3...3 VG (A[2]) 3 ...3 VG (A[3])

T N TN

L3VG(BI1])3...3V6(BI[2])3..3VG(B[3])3 ... v oo 3
non-orthogonal]
. [0 if VG(BJj]) is not matched
LeS<(@n-1100a2+) 4 ¢ VG(B[]) is matched to one
[#3‘3 In upper string l @ if VG(B[j]) is matched to > 1

[could match VG completely, but loose many 3-

Extensions

similar problems:
edit distance

dynamic time warping

alphabet size:

longest common subsequence and edit distance
are even hard on binary strings, i.e., alphabet {0,1}

longest common subsequence of k strings takes time Q(n*~¢)

Summary

reduction SETH —» OV
introduced k-OV
OV-hardness for Fréchet distance

OV-hardness for longest common subsequence

l l I I max planck institut
informatik

