
Complexity Theory of
Polynomial-Time Problems

Lecture 3: The polynomial method
Part I: Orthogonal Vectors

Sebastian Krinninger

Organization of lecture

• No lecture on 26.05. (State holiday)

• 2nd exercise sheet: Next week

• Tutorials:
• New slot: Friday, 12:15 - 14:00, U12 E1.1, biweekly

• Fr, 13.05. (tomorrow)

• Fr, 03.06.

• Etc.

The polynomial method

• Recently developed technique in Algorithm Design

• Current fastest algorithms for
• All-Pairs Shortest Paths [Williams 14]

• Orthogonal Vectors [Abboud/Williams/Yu 15]

• Hamming Nearest Neighbors [Alman/Williams 15]

• Two main tools
1. Razborov-Smolensky from Circuit Complexity

2. Fast rectangular matrix multiplication

Reminder: Orthogonal Vectors Problem

Input: Two sets 𝐴, 𝐵 ⊆ 0,1 𝑑 of 𝑑-dimensional 0/1-vectors of size 𝑛

Output: Is there a pair 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 s.t. 𝑎 and 𝑏 are orthogonal?

∃𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵: 〈𝑎, 𝑏〉 = 0

 𝑘=1
𝑑 𝑎 𝑘 ⋅ 𝑏 𝑘 = 0

∀1 ≤ 𝑘 ≤ 𝑑: (𝑎 𝑘 = 0) ∨ (𝑏 𝑘 = 0)

Trivial algorithms:

• 𝑂 𝑛2𝑑

• 𝑂(2𝑑𝑛)
Interesting Regime: 𝑑 = 𝑐 log 𝑛

Today’s result

Reminder:

State of the art:

In this lecture: 𝑛2−1/𝑂(log 𝑑)

Algorithm is randomized and correct with high probability, i.e., probability ≥
1 − 1/𝑛

Conjecture: There is no algorithm for the orthogonal vectors
problem with running time 𝑂(𝑛2−𝜖poly(𝑑)) for any 𝜖 > 0.

Theorem: There is an algorithm for the orthogonal vectors

problem with running time 𝑛2−1/𝑂(log(𝑑/ log 𝑛)).

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems

3. Evaluate circuits with probabilistic polynomials of low degree

4. Evaluate polynomials using fast rectangular matrix multiplication

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems

3. Evaluate circuits with probabilistic polynomials of low degree

4. Evaluate polynomials using fast rectangular matrix multiplication

Dividing into smaller subproblems

1. Divide 𝐴 and 𝐵 into 𝑞 = ⌈
𝑛

𝑠
⌉ subsets of size ≤ 𝑠:

𝐴1, … , 𝐴𝑞 and 𝐵1, … , 𝐵𝑞

2. Construct a polynomial 𝑃(𝑎1 1 ,…𝑎1 𝑑 , … , 𝑎𝑠 1 … , 𝑎𝑠 𝑑 ,

𝑏1 1 ,… 𝑏1 𝑑 , … , 𝑏𝑠 1 … , 𝑏𝑠 1)
𝑃 𝐴𝑖 , 𝐵𝑗 = 1 if and only if 𝐴𝑖, 𝐵𝑗 contains orthogonal pair
…only with high probability

3. For every pair of subsets 𝐴𝑖, 𝐵𝑗: evaluate 𝑃 on 𝐴𝑖, 𝐵𝑗
…simultaneously! → 𝑂(

𝑛2

𝑠2
polylog(𝑛))

4. Return “yes” if some 𝐴𝑖, 𝐵𝑗 contains orthogonal pair, “no” otherwise

We set 𝑠 = 2𝜖 log 𝑛/ log 𝑑 = 𝑛𝜖/ log 𝑑 for some sufficiently small 𝜖

Questions

1. How to construct suitable polynomial 𝑃?

2. How to evaluate 𝑃 fast on all pairs of inputs?

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems

3. Evaluate circuits with probabilistic polynomials of low degree

4. Evaluate polynomials using fast rectangular matrix multiplication

Boolean circuits

Boolean circuit

• Directed acyclic graph

• Sources: input bits

• Sink: output bit

• Inner nodes: Boolean operations

• AND: ∧

• OR: ∨

• Arbitrary “fan-in”

Circuit for checking orthogonality of vectors

Are 𝑥 and 𝑦 orthogonal? 𝑥 and 𝑦 orthogonal iff
¬∃𝑖: 𝑥 𝑖 = 1 ∧ 𝑦 𝑖 = 1

Output bit 𝑧 = 1 iff

𝑥 and 𝑦 orthogonal

AND of ORs with

• 2𝑑 negated inputs

• 1 output

∨

¬𝑥[1] ¬𝑦[1]

∨

¬𝑥[2] ¬𝑦[2]

∨

¬𝑥[𝑑] ¬𝑦[𝑑]

… …

∧

𝑧

Circuit for finding orthogonal pair

Is there an orthogonal pair? Check orthogonality for every pair

𝑥1, 𝑦1 orthogonal OR

𝑥1, 𝑦2 orthogonal OR

… OR

𝑥𝑠, 𝑦𝑠 orthogonal?

OR of ANDs of ORs

2𝑑𝑠2 negated inputs

∨

∧ … …… …

∨ ∨

∧

∨ ∨

∧

∨ ∨… … … … … …

¬𝑥1[1] ¬𝑦1[1]

𝑧

¬𝑥1[1] ¬𝑦2[1] ¬𝑥𝑠[𝑑] ¬𝑦𝑠[𝑑]… … …

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems

3. Evaluate circuits with probabilistic polynomials of low degree

4. Evaluate polynomials using fast rectangular matrix multiplication

From circuits to polynomials

• Obtain polynomial over 𝐹2 outputting 1 if and only if circuit outputs 1

• 𝐹2: Field of {0, 1} with operations ⊕ and ⋅

•⊕ is XOR-operation:
• 0⊕ 0 = 0 1⊕ 0 = 1 0⊕ 1 = 1 1⊕ 1 = 0
• XOR of multiple variables:
𝑥1⊕𝑥2⊕⋯⊕𝑥𝑘 = 1 if and only if odd number of 𝑥𝑖’s is 1

• Expanded polynomials:
• 𝑎 ⋅ 𝑏 ⊕ 𝑐 ⋅ 𝑎 ⊕ 𝑏 ⊕ 𝑑 = 𝑎𝑐 ⊕ 𝑎𝑏𝑐 ⊕ 𝑎𝑏𝑑 ⊕ 𝑎𝑐𝑑
• XOR of monomials
• Goal: Few monomials allows fast evaluation later

Representing circuit by polynomial

Straightforward approach:

• AND: 𝑎 ∧ 𝑏 ⇒ 𝑎 ⋅ 𝑏

• Negation: ¬𝑎 ⇒ 1⊕ 𝑎 (addition=subtraction in 𝐹2)

• OR: 𝑎 ∨ 𝑏 ⇒ ¬(¬𝑎 ∧ ¬𝑏) (DeMorgan’s Law)

Example: Bottom-level of circuit
¬𝑎 ∨ ¬𝑏 ⇒ 1⊕ 𝑎 ⋅ 𝑏

Expanding a multiplication (distributive law)

𝑥1,1⊕⋯⊕𝑥1,𝑘 ⋅ 𝑥2,1⊕⋯⊕𝑥2,𝑘 ⋅ … ⋅ 𝑥𝑡,1⊕⋯⊕𝑥𝑡,𝑘 = 𝑥1,1 ⋅ 𝑥2,1 ⋅ … ⋅ 𝑥𝑡,1⊕⋯⊕𝑥1,𝑘 ⋅ 𝑥2,𝑘 ⋅ … ⋅ 𝑥𝑡,𝑘

⊕

∧

⊕⊕

𝑥𝑡,𝑘𝑥1,1

…

𝑥1,𝑘 … …

AND of 𝑡 XORs

Each XOR has
𝑘 inputs

𝑥𝑡,1… …

∧

⊕

∧∧

𝑥𝑡,𝑘𝑥1,1

…

𝑥𝑡,1 … …

XOR of 𝑘𝑡 ANDs

Each AND has
𝑡 inputs

𝑥1,𝑘… …

𝑘 choices 𝑘 choices 𝑘 choices 𝑘𝑡 monomials

Running time: 𝑂(𝑘𝑡𝑡 ⋅ deg) where deg is degree after expansion (maximum size of any monomial); here deg ≤ 𝑡

Razborov/Smolensky trick [Raz87] [Smo87]

Naïve representation of OR

DeMorgan:

𝑂𝑅 𝑥1, … , 𝑥𝑘 = 1⊕

𝑖=1

𝑘

1⊕ 𝑥𝑖

After expansion: 2𝑘 monomials

Probabilistic representation of OR

Parameter 𝑡

Fewer monomials, correct whp

⊕

∨

⊕⊕

𝑥𝑘𝑥1

…

𝑥2 … …

OR of 𝑡 XORs

Add each edge

With probability
1

2

∨

𝑥1 𝑥2 𝑥𝑘… …

Correct representation with high probability

Case 1: 𝑥1 ∨ ⋯∨ 𝑥𝑘 = 0
Easy case: each XOR outputs 0, top OR outputs 0

Case 2: 𝑥1 ∨ ⋯∨ 𝑥𝑘 = 1
Let 𝑋 be set of inputs with 𝑥𝑖 = 1

For each XOR:

• If XOR has odd number of links to 𝑋: XOR outputs 1
(good event: top OR outputs 1)

• If XOR has even number of links to 𝑋: XOR outputs
0 (bad event!)

Probability that XOR has even number of links to 𝑋:

= 1/2 because last element of X “decides” whether
number of links is even or odd (each with prob. 1/2)

Probabilistic representation of OR

⊕

∨

⊕⊕

𝑥𝑘𝑥1

…

𝑥2 … …

OR of 𝑡 XORs

Add each edge

With probability
1

2

⇒ Probability that all XORs output 0: =
1

2

𝑡
=
1

2𝑡

⇒ Probability that OR outputs 1: = 1 −
1

2𝑡

Bounding number of monomials

Formal definition of polynomial

For 𝑖 = 1… 𝑡, 𝑗 = 1…𝑘:

• With probability
1

2
: Set 𝑟𝑖,𝑗 = 1

• Otherwise: Set 𝑟𝑖,𝑗 = 0

Polynomial: 𝑂𝑅𝑡 𝑥1, … , 𝑥𝑘 =

1⊕

𝑖=1

𝑡

1⊕⊕𝑗=1
𝑘 𝑟𝑖,𝑗 ⋅ 𝑥𝑖

After expansion: 𝑘 + 1 𝑡 monomials

Probabilistic representation of OR

⊕

∨

⊕⊕

𝑥𝑘𝑥1

…

𝑥2 … …

OR of 𝑡 XORs

Add each edge

With probability
1

2

Formal definition

Example: OR-gate represented by

𝑂𝑅𝑡 𝑥1, … , 𝑥𝑘 = 1⊕ 𝑖=1
𝑡 1⊕⊕𝑗=1

𝑘 𝑟𝑖,𝑗 ⋅ 𝑥𝑖 with error 𝛿 = 1 −
1

2𝑡

Definition: Let 𝐶 be a Boolean circuit with 𝑘 input gates and let
𝐷 be a finite distribution of polynomials on 𝑘 variables over a
ring 𝑅 containing 0 and 1(∗). The distribution 𝐷 is a probabilistic
polynomial over 𝑅 representing 𝐶 with error 𝛿 if for all
𝑥1, … , 𝑥𝑘 ∈ 0,1

𝑘:
Pr
𝑝∼𝐷
𝑝 𝑥1, … , 𝑥𝑘 = 𝐶 𝑥1, … , 𝑥𝑘 > 1 − 𝛿.

(*) In our case, 𝑅 is the field 𝐹2

Representing OV circuit I

Are 𝑥 and 𝑦 orthogonal? Bottom OR:
¬𝑥 𝑘 ∨ ¬𝑦 𝑘
⇒ 1⊕ 𝑥[𝑘] ⋅ 𝑦[𝑘]

Middle AND:

1. DeMorgan

2. Razborov/Smolensky
with 𝑡1 = 3 log 𝑠

Number of monomials:
𝑑 + 1 𝑡1

∨

¬𝑥[1] ¬𝑦[1]

∨

¬𝑥[2] ¬𝑦[2]

∨

¬𝑥[𝑑] ¬𝑦[𝑑]

… …

∧

𝑧

Representing OV circuit II

Is there an orthogonal pair?

∨

∧ … …… …

∨ ∨

∧

∨ ∨

∧

∨ ∨… … … … … …

¬𝑥1[1] ¬𝑦1[1]

𝑧

¬𝑥1[1] ¬𝑦2[1] ¬𝑥𝑠[𝑑] ¬𝑦𝑠[𝑑]… … …

Middle ANDs:

XOR of 𝑠2 polynomials, each
with 𝑑 + 1 𝑡1 monomials

⇒ 𝑠2 𝑑 + 1 𝑡1 monomials

Top OR:

Raz/Smol with 𝑡2 = 2

⇒ 𝑠2 𝑑 + 1 𝑡1 𝑡2 monomials
= 𝑠4 𝑑 + 1 6 log 𝑠

Analysis of error

We apply Razborov/Smolensky

• 𝑠2 times with 𝑡1 = 3 log 𝑠

• 1 time with 𝑡2 = 2

Union Bound: Pr 𝑋 ∪ 𝑌 ≤ Pr 𝑋 + Pr 𝑌

Probability of error: ≤
𝑠2

2𝑡1
+
1

2𝑡2
=
𝑠2

𝑠3
+
1

4
=
1

𝑠
+
1

4
≤
1

3
(1/𝑠 is small enough for instances with sufficiently large 𝑛)

Plugging in the right values

𝑠 = 2𝜖 log 𝑛/ log 𝑑

𝜖 = 1/160

#monomials: 𝑚 ≤ 𝑠4 𝑑 + 1 6 log 𝑠 ≤ 𝑠4 𝑑 + 1 6𝜖 log 𝑛/ log 𝑑

≤ 4𝜖 log 𝑛 + 12𝜖 log 𝑛 = 0.1 log 𝑛

⇒ 𝑚 ≤ 𝑛0.1

Running time for expanding polynomial

We explicitly have to expand our polynomial into XOR of monomials!

Running time dominated by applications of distributive law

1st expansion (repeated 𝑠2 times):

• Degree after expansion: 𝑂(𝑡1)

• Total time: 𝑂(𝑠2 𝑑 + 1 𝑡1𝑡1
2)

2nd expansion :

• Degree after expansion: 𝑂(𝑡1𝑡2)

• Running time: 𝑂 𝑠2 𝑑 + 1 𝑡1 𝑡2 𝑡1
2𝑡2
2 ≤ 𝑂 𝑛0.1 𝑡1

2𝑡2
2 ≤ 𝑂 𝑛0.1 log2 𝑛

⇒ Total time: 𝑂 𝑛0.1 log2 𝑛 (negligible)

Summary for probabilistic polynomial

We can construct polynomial 𝑃 over 𝐹2 with 2𝑠𝑑 inputs such that,
given two sets 𝐴′, 𝐵′ ⊆ 0,1 𝑑 of 𝑑-dimensional 0/1-vectors of size 𝑠,

with probability >
2

3
: 𝑃 𝐴′, 𝐵′ = 1 iff 𝐴′ and 𝐵′ have orthogonal pair.

Overview

1. Reduce problem to many subproblems of very small size

2. Precompute small circuits for solving subproblems

3. Evaluate circuits with probabilistic polynomials of low degree

4. Evaluate polynomials using fast rectangular matrix multiplication

Fast matrix multiplication

• Goal: Compute 𝐶 = 𝐴 × 𝐵 where 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices

• Naïve algorithm: 𝑂 𝑛3

• Strassen’s algorithm: 𝑂 𝑛2.807

• Current fastest: 𝑂 𝑛2.373

• Best we can hope for: 𝑂 𝑛2

Rectangular matrix multiplication

Lemma: There is an algorithm for multiplying an 𝑁 × 𝑁0.17

matrix with an 𝑁0.17 × 𝑁 matrix in time 𝑂(𝑁2 log2 𝑛).

𝑁0.1

𝑁

Also works for finite fields such as 𝐹2!

× =

Fast evaluation of polynomial

• Given: Polynomial 𝑃(𝑥[1], … , 𝑥[𝐾], 𝑦[1], … , 𝑦[𝐾]) over 𝐹2
• With at most 𝑁0.1 monomials

• Two sets of inputs:
𝑋 = 𝑥1, … , 𝑥𝑁 ⊆ 0,1

𝐾 , 𝑌 = 𝑦1, … , 𝑦𝑁 ⊆ 0,1
𝐾

• Evaluate 𝑃 on all pairs 𝑥𝑖 , 𝑦𝑗 ∈ 𝑋 × 𝑌 simultaneously

in time 𝑂(𝑁2polylog 𝑛)

Reduction to matrix multiplication

𝑥1
⋮
𝑥𝑁

×

𝑁0.1 monomials

𝑦1…𝑦𝑁

𝑁0.1 monomials

Entry 𝑖, 𝑗 : Restriction of 𝑗-th monomial to input 𝑥𝑖

Entry 𝑖, 𝑗 : Restriction of 𝑖-th monomial to input 𝑦𝑗

Evaluating OV-polynomial on all subgroups

1. Divide 𝐴 and 𝐵 into 𝑞 = ⌈
𝑛

𝑠
⌉ subsets of size ≤ 𝑠:

𝐴1, … , 𝐴𝑞 and 𝐵1, … , 𝐵𝑞

2. Construct a polynomial 𝑃(𝑎1 1 ,…𝑎1 𝑑 , … , 𝑎𝑞 1 … , 𝑎𝑞 𝑑 ,

𝑏1 1 ,… 𝑏1 𝑑 , … , 𝑏𝑞 1 … , 𝑏𝑞 1)

𝑃 𝐴𝑖 , 𝐵𝑗 = 1 if and only if 𝐴𝑖, 𝐵𝑗 contains orthogonal pair

3. For every pair of subsets 𝐴𝑖, 𝐵𝑗: evaluate 𝑃 on 𝐴𝑖, 𝐵𝑗
𝑃 has ≤ 𝑛0.1 monomials

Simultaneous evaluation in time 𝑂(𝑛2/𝑠2 polylog 𝑛) ≤ 𝑛2−1/𝑂(log 𝑑)

𝑠 = 2𝜖 log 𝑛/ log 𝑑 = 𝑛𝜖/ log 𝑑 for 𝜖 = 1/160

Remarks

Correctness with high probability

• Polynomial is only correct with probability ≥ 2/3

• Amplify the success probability by repeating with 10 log 𝑛 independent
polynomials and taking majority value

• ⇒ Chernoff Bound

Faster algorithm:

• 𝑛2−1/𝑂(log(𝑑/ log 𝑛))

• Just needs better estimate for number of monomials and slightly different
choice of 𝑠

