Complexity Theory of
Polynomial-Time Problems

Lecture 3: The polynomial method
Part |I: Orthogonal Vectors

Sebastian Krinninger

Organization of lecture

* No lecture on 26.05. (State holiday)
e 2nd exercise sheet: Next week

e Tutorials:

New slot: Friday, 12:15 - 14:00, U12 E1.1, biweekly
Fr, 13.05. (tomorrow)

Fr, 03.06.

Etc.

The polynomial method

* Recently developed technique in Algorithm Design

* Current fastest algorithms for
e All-Pairs Shortest Paths [Williams 14]
* Orthogonal Vectors [Abboud/Williams/Yu 15]
« Hamming Nearest Neighbors [Alman/Williams 15]

* Two main tools

1. Razborov-Smolensky from Circuit Complexity
2. Fast rectangular matrix multiplication

Reminder: Orthogonal Vectors Problem

Input: Two sets A, B © {O,l}d of d-dimensional 0/1-vectors of size n
Output: Is there a paira € A,b € B s.t. a and b are ?
da € A,b € B:
Ya-ialk]-blk] =0
Vi<k<d:(alk] =0)Vv (blk] =0)
Trivial algorithms:
e 0(n%d)
* 0(2%n)

} Interesting Regime: d = clogn

Today’s result

Reminder:

Conjecture: There is no algorithm for the orthogonal vectors

problem with running time O(n*~€poly(d)) for any € > 0.

State of the art:

Theorem: There is an algorithm for the orthogonal vectors

problem with running time n2-1/0(log(d/logn))

In this lecture: n2~1/0(ogad)

,%Igoii;hm is randomized and correct with high probability, i.e., probability =
—1/n

Overview

Reduce problem to many subproblems of very small size
Precompute small circuits for solving subproblems
Evaluate circuits with probabilistic polynomials of low degree

B w e

Evaluate polynomials using fast rectangular matrix multiplication

Overview

1. Reduce problem to many subproblems of very small size

Dividing into smaller subproblems

1. DivideAand B intoqg = [%] subsets of size < s:
Ay, ..,Agand By, ..., B,
2. Construct a polynomial P(a4|1], ...a4[d], ..., a5 |1] ..., as|d],

b.[1],...b.[d], ..., bs[1] ..., b<[1])
P(Al,B) = 1lifandonly if A;, B; contains orthogonal pair
...only with high probability

3. For every pair of subsets Al, B;: evaluate P on 4;, B;
...simultaneously! — 0(— polylog(n))

4. Return if some A;, B; contains orthogonal pair, “no” otherwise

We set s = 2€logn/logd — pe/logd 5 some sufficiently small e

Questions

1. How to construct suitable polynomial P?
2. How to evaluate P fast on all pairs of inputs?

Overview

2. Precompute small circuits for solving subproblems

Boolean circuits

Boolean circuit

* Directed acyclic graph

e Sources: input bits

e Sink: output bit

* Inner nodes: Boolean operations
* AND: A

* OR:V

* Arbitrary “fan-in”

Circuit for checking orthogonality of vectors

Are x and y orthogonal? x and y orthogonal iff
—3i:x|i] =1 /\y[i] =1

Output bit z = 1 iff
x and y orthogonal

/ \ AND of ORs with
e 2d negated inputs
\ / \ \ * 1 output

Circuit for finding orthogonal pair

Is there an orthogonal pair? Check orthogonality for every pair
z X1,y1 orthogonal OR
T X1,Y, orthogonal OR
Y OR
/\ /\ /\
\/ e V Ve e V Vo e e V OR of ANDs of ORs

2ds? negated inputs

Overview

3. Evaluate circuits with probabilistic polynomials of low degree

From circuits to polynomials

* Obtain polynomial over F, outputting 1 if and only if circuit outputs 1
* F,: Field of {0, 1} with operations & and -
* P is XOR-operation:

c08p0=0 10=1 0p1=1 11=0

e XOR of multiple variables:
X1 D x, DD x, = 1if and only if odd number of x;’s is 1

* Expanded polynomials:
ca-bPc)- (aPbPd) =ac b abc @ abd D acd

e XOR of monomials
* Goal: Few monomials allows fast evaluation later

Representing circuit by polynomial

Straightforward approach:

* AND: aANb=>a-b
* Negation: —a=>1@ a (addition=subtraction in F5,)
* OR: aVb=—=(—-aA-b) (DeMorgan’s Law)

Example: Bottom-level of circuit
—aVab=>18a-b

Expanding a multiplication (distributive law)

> AND of t XORs > XOR of k! ANDs

)

>

J \

J \

Each AND has
> .
t inputs

Each XOR has
[k inputs

(x1,1 DD xl,k) ' (x2,1 DD x2,k) T (xt,l DD xt,k) = X171 X271 " e Xp1 D D Xy Xo e Xk

T T T]

k choices k choices k choices kt monomials

Running time: O(k't - deg) where deg is degree after expansion (maximum size of any monomial); here deg < t

Razborov/Smolensky trick [Raz87] [Smo8&7]

Naive representation of OR Probabilistic representation of OR
\%
X1 Xz Xk Add each edge
> With probabilityl
DeMorgan: 2

Parametert
Fewer monomials, correct wh

k
OR(X]_, ...,xk) =1 @ 1_[(1 @ xi)
=1

After expansion: 2% monomials

P

Correct representation with high probability

Casel:x; V---Vx, =0 Probabilistic representation of OR
Easy case: each XOR outputs O, top OR outputs O
\V/ .
Case 2:x; V-V =1 / ‘ ~ OR of t XORs
Let X be set of inputs with x; = 1
For each XOR: an) o) D S
« If XOR has odd number of links to X: XOR outputs 1 IR T TR Add each edge
. I -~ /s _ -0 S o >

(good event: top OR outputs 1) //'//L =T BRI \\ With probabilitV%
* If XOR has even number of links to X: XOR outputs PN TSsy)

O (bad event!) X1 Xy o e Xk

Probability that XOR has even number of links to X:

" 1\
= 1/2 because last element of X “decides” whether ~ = Probability that all XORs output 0: = (E) ot

number of links is even or odd (each with prob. 1/2) = Probability that OR outputs 1: = 1 — 1
; ;

Bounding number of monomials

Formal definition of polynomial
Fori=1..t,j=1..k:

* With probability %: Setr; j =1
* Otherwise: Setr; ; =0

PonnomiaI:tORt(xl, vy Xp) =

1D (1 ODj-1 1 'xi)
J
i=1

After expansion: (k + 1) monomials

Probabilistic representation of OR

-

\Y
/ ‘ \ > OR of t XORs

f '\\/V Vo 4 K
K et ol Ple . Add each edge
/ I -~ /’,,A\\N \\\ \ \) - 1
RS ~~Js. With probability =
/z/,":,/ \::"\A 2
A’
X1 X Xk -

Formal definition

Definition: Let C be a Boolean circuit with k input gates and let
D be a finite distribution of polynomials on k variables over a
ring R containing 0 and 1), The distribution D is a probabilistic
polynomial over R representing C with error ¢ if for all
(x4, ..., x3,) € {0,1}%:

pEI;)[p(xl’ v, X)) = C(xq, ..., x)] >1-06.

Example: OR-gate represented by

. 1
OR,(x{,...,xx) = 1 D]‘[’l?zl(l @@?zl i xl-) with errord =1 — >t

(*) In our case, R is the field F,

Representing OV circuit |

Are x and y orthogonal? Bottom OR:
—x[k] vV —ylk]

T = 1@ x[k] - y|k]
A Middle AND:
/ ‘ \ 1. DeMorgan
2. Razborov/Smolensky
Vv v v witht; = 3logs

\ / \ \ Number of monomials:
(d+ 1)k

Representing OV circuit ||

Is there an orthogonal pair? Middle ANDs:
2 XOR of s? polynomials, each
[with (d + 1)*1 monomials
% = s% (d + 1) monomials
SN N 0N Teow
Raz/Smol with t, = 2
V V V V V
/ / @ (s?(d + 1))z monomials

w1 sl - [l el ~x[d]| ys[d] = s*(d + 1)6'8s

Analysis of error

We apply Razborov/Smolensky
* 5% times with t; = 3logs
* 1timewitht, = 2

Union Bound: Pr(X UY) < Pr(X) + Pr(Y)

. 5° 1 s 1 1,1 _1
Probability of error: < —+ —=—Z+-=-+-< -
201 " 2tz §3 4 s 473

(1/s is small enough for instances with sufficiently large n)

Plugging in the right values

g = Zelogn/logd
e =1/160

#monomials: m < s*(d + 1)¢1085 < s#(d + 1)6€logn/loga

< 4elogn + 12¢logn = 0.1logn

=m < nY1

Running time for expanding polynomial

We explicitly have to expand our polynomial into XOR of monomials!
Running time dominated by applications of distributive law

15t expansion (repeated s? times):
* Degree after expansion: O(t1)
* Total time: O(s?(d + 1)%1¢t%)

2"d expansion :
* Degree after expansion: O(t;t,)

 Running time: 0 ((sz(d + 1)t1)t2 t12t22) < 0%t tft2) < 0(n®tlog? n)

= Total time: 0(n" 1 log? n) (negligible)

Summary for probabilistic polynomial

We can construct polynomial P over F, with 2sd inputs such that,
given two sets A’, B’ € {0,1}¢ of d-dimensional 0/1-vectors of size s,

with probability > %: P(A',B") = 1iff A’ and B’ have orthogonal pair.

Overview

4. Evaluate polynomials using fast rectangular matrix multiplication

Fast matrix multiplication

e Goal: Compute C = A X B where A and B are n X n matrices

* Naive algorithm: 0(n?)

e Strassen’s algorithm: 0 (n?8%7)

e Current fastest: 0(n?373)

* Best we can hope for: 0(n?)

Rectangular matrix multiplication

/"

N< X =

Lemma: There is an algorithm for multiplying an N x N 917
matrix with an N%17 x N matrix in time O(N“ log® n).

Also works for finite fields such as F, |

Fast evaluation of polynomial

* Given: Polynomial P(x|1], ..., x| K], y|1], ..., y[K]) over F,
 With at most N%1 monomials

* Two sets of inputs:
X = {xl, ...,XN} - {O,l}K,Y — {yl' ...,yN} - {O,l}K

* Evaluate P on all pairs (xi,yj) € X X Y simultaneously
in time O(N?polylog(n))

Reduction to matrix multiplication

/‘

P < X }No'l monomials

XN N y,
Y

~ Y1 --YN
H_J

N°%1 monomials

Entry (i, j): Restriction of i-th monomial to input y;

Entry (i, j): Restriction of j-th monomial to input x;

Evaluating OV-polynomial on all subgroups

1. Divide Aand B intog = [%] subsets of size < s:
Ay, ...,Aq and By, ...,Bq
2. Construct a polynomial P(aq[1], ...a4[d], ...,aq[1] ..., a
bil1],...b1ld], ..., bg[1] ..., bgl1])
P(Al-,B-) = 1lifand only if A;, Bj contains orthogonal pair

Q
=
U
(I

3. For every pair of subsets A;, B;: evaluate P on A;, B;

P has < n%! monomials
Simultaneous evaluation in time 0(n?/s® polylog(n)) < n

s = 2¢€logn/logd — pe/logd for ¢ = 1 /160

2—1/0(log d)

Remarks

Correctness with high probability
* Polynomial is only correct with probability = 2/3

* Amplify the success probability by repeating with 10 logn independent
polynomials and taking majority value

e = Chernoff Bound

Faster algorithm:
° n2—1/0(10g(d/ log n))

* Just needs better estimate for number of monomials and slightly different
choice of s

