Distributed and Parallel Graph Distance Approximation

Yasamin Nazari

University of Salzburg Fall 2021

Publications

Relevant papers:

- M. Dinitz and N, Massively Parallel Distance Sketches, Conference on Principles of Distributed Systems (OPODIS) 2019 (best student paper).
- N, Sparse Hopsets in Congested Clique, Conference on Principles of Distributed Systems (OPODIS) 2019.

Also related:

- J. Łącki and **N**, *Faster Decremental Approximate Shortest Paths via Hopsets with Low Hopbound* (to be submitted).

Outline

- Models
 - Background on distributed/parallel/big data models
- Introduction to hopsets
 - Application in distributed distance computation
 - Massively parallel distance sketches
- Distributed algorithm for constructing hopsets

Evolution of Distributed Models

• LOCAL Model

- Given an input graph G=(V,E). Communication in synchronous rounds on G.
- In each round each node can send a message of unlimited size to each neighbor.
- Goal: Minimize rounds of communication until nodes know their portion of output.

Distributed and Parallel Models

• LOCAL Model

- Given an input graph G=(V,E). Communication in synchronous rounds on G.
- In each round each node can send a message of unlimited size to each neighbor.
- Goal: Minimize rounds of communication until nodes know their portion of output.

CONGEST Model

- Similiar to LOCAL but messages can have size at most O(log n).

Parallel (PRAM) Models

Processers read/write on registers. Goal is to minimize parallel rounds/depth.

Congested Clique Model

- Input graph G=(V,E). Communication over a clique (all-to-all).
 - Each node sends a message of size O(log n) (congestion) to any other node.
 - Similiar to CONGEST except communication graph is different from input graph
 - Closer to modern models, e.g. SDNs, MapReduce and Massively Parallel Computation models.

Massively Parallel Computation (MPC)

- MPC model: An input of size N, distributed over
 P = N/S machines, O(S) memory per machine.
 - Each machine has memory strictly sublinear in N.
 IO/Communication bounded by memory.
 - Abstraction of big data platforms such as MapReduce, Spark, Hadoop, etc.

Massively Parallel Computation (MPC)

- MPC model: An input of size N, distributed over P = N/S machines, O(S) memory per machine.
 - Each machine has memory strictly sublinear in N.
 IO/Communication bounded by memory.
- Low memory MPC for a graph G (m edges and n nodes):
 - Memory per machine is $O(n^{\epsilon}), \epsilon < 1$.
 - Overall memory is O(m).

MPC vs distributed and parallel models

Power of MPC depends

- Primarily: memory per machine
- Secondary: number of machines
- For graphs MPC with linear in number of nodes memory (per machine) close to Congested Clique
 - In each round each machine can send a message to any other machine since memory per machine is O(n)
- Closer to PRAM when memory per machine is very small

Massively Parallel Computation

Intuition: MapReduce

- Input: <key, value> pairs
- Map and shuffle: pairs go to machine based on their key
- Reduce: Sequential computation on one key (local computation on a machine)
- Example: Given a graph G=(V,E), compute an aggregate function over edges of a node (degree, lightest edge)
 - Sort the input (pairs (u,v)) based on ID of the first vertex
 - Pairs incident to u are in a contigious set of machines
 - Find the minimum over these machines based on an aggregate tree

• Previous:

- Distributed/Parallel/Big Data Models

• Next:

- Distributed Shortest Paths

Shortest Path Computation

Single-source shortest paths:

- Given an undirected weighted graph G= (V, E), and a source node s, compute (approximate) distances from s to all nodes in V.
- Variants:
 - Single-source (SSSP), Multi-source (MSSP), all-pairs (APSP)

Shortest Path Computation

Shortest path algorithms

- Dijksta's: very sequential, not parallelizable
- Simple parallel/distributed algorithm:
 - For unweighted graphs run BFS.
 - For weighted graphs, run Bellman-Ford.
 - Slow for graphs with large diameter, so we need a new tool.

Bellman-Ford

- Single-source shortest path via Bellman-Ford:
 - Each iteration: each node updates their distance estimate from the source s by computing

$$\tilde{d}(v,s) = \min_{u \in N(v)} \tilde{d}(u,s) + w(u,v)$$

Distributed Bellman-Ford

• Distributed Bellman-Ford:

 Each iteration: each node updates their distance estimate from the source s by computing

$$\tilde{d}(v,s) = \min_{u \in N(v)} \tilde{d}(u,s) + w(u,v)$$

- Each iteration can be performed in one round of Congested Clique or MPC
 - Congested Clique: Need to send only one message of O(log n) bits for each edge
 - MPC: Aggregate tree idea

Bellman-Ford

- Bellman-Ford from single source *s* :
 - h iterations to compute $d_G^{(h)}(s,v)$ (distance using paths of at most h hops) for all $v \in V$.
 - Require O(diam) iterations diam is the shortest path diameter:
 - Maximum number of hops in the shortest paths. Could be as large as $\Omega(n)$.

Hopsets

- Given a weighted undirected graph G = (V, E, w), for any $u, v \in V$:
 - $d_G(u, v)$: shortest path distance between u and v in G.
 - $d_G^{(\beta)}(u,v)$: shortest path with at most β hops (number of edges) between u and v.
- Given a G = (V, E, w), a (β, ϵ) -hopset H is a set of edges, s.t. between every pair of nodes u, v:

$$d_G(u,v) \le d_{G\cup H}^{(\beta)}(u,v) \le (1+\epsilon)d_G(u,v)$$

- hopbound: eta
- Approx factor: $1 + \epsilon$

Hopsets

- Given G = (V, E, w), $a(\beta, \epsilon)$ -hopset H is a set of edges, s.t. between every pair of nodes u, v: $d_G(u, v) \leq d_{G \cup H}^{(\beta)}(u, v) \leq (1 + \epsilon)d_G(u, v)$
 - Intuition: adding hopset edges is like adding shortcuts for reducing the diameter.

Hopsets

- Application: Given a (β, ϵ) -hopset H for G, we can compute approximate distances in β dist rounds.
 - Run Bellman-Ford for β rounds to obtain approximate distances ($\beta \ll {\rm ~diam}$).
- Goal:
 - a sparse hopset, with small hopbound, often polylogarithmic in n, and fast construction.
 - Tradeoffs based on existential lower bounds

• Previous:

 Intro to hopsets, and application in shortest path computation via Bellman-Ford.

• Next:

 Using hopsets for computing distributed/parallel *distance sketches*

Distance Sketches

Distance sketches for a graph:

- Small information stored for each node, such that approximate distance of a pair u, v of nodes can be queried only using sketches of u and v.
- Existing Distance Sketches (Thorup-Zwick 05):
 - Size: $\tilde{O}(n^{1/k})$ per node.
 - Stretch: 2k 1 (approximation factor)
 - Query time (sequential): O(k)
 - Distributed/MPC query time: only 2 rounds!

Distance Sketches in MPC

• Distance sketches in MPC:

- Distributed algorithm by Das Sarma et al (2015) will take $O(\operatorname{diam} \cdot n^{1/k})$ rounds.
- Using hopsets we can compute distance sketches in $\tilde{O}(n^{1/k})$ rounds of MPC.
- Can we construct distance sketches in polylogarithmic rounds?
 - Yes, at the cost of a weaker stretch using spanners.

MPC Distance Sketches

Results	Size per node	Stretch	Time (rounds)
Das Sarma et al. (2015)	$ ilde{O}(n^{1/k}),$ $k \ge 2$	(2k - 1)	$O(\operatorname{diam} \cdot n^{1/k})$
DN 2019	$ ilde{O}(n^{1/k}),$ $k \ge 2$	$(2k-1)(1+\epsilon)$	$\tilde{O}(n^{1/k})$
DN 2019	$\tilde{O}(n^{1/k}),$ $k \ge 2$	$O(k^2)$	Polylogarithmic

• Previous:

 Using hopsets for computing massively parallel distance sketches

• Next:

- Sparse hopsets in Congested Clique

Sparse Hopsets in Congested Clique

- Goal: Distributed algorithm for constructing a sparse hopset
 - Relevant paper: N, Sparse Hopsets in Congested Clique (OPODIS 2019).
 - Polylogarithmic round algorithm for sparse hopsets with polylogairthmic hopbound in the Congested Clique model

Congested Clique Model

- Given a graph G=(V,E), each node can send a message of size O(log n) (congestion) to any other node.
 - Initially each node knows the incident portion of the input, and should know incident part of the output.
 - **Goal:** minimize rounds of communication.

Hopsets in Congested Clique

Results	Size	Hopbound	Time (rounds)
Censor-Hillel et al. (2019)	$\tilde{O}(n^{3/2})$	$O(\log^2(n)/\epsilon)$	Polylogarithmic
Elkin-Neiman (2017, 2019)	$\tilde{O}(n^{1+1/k}),$ $k \ge 2$	Polylogarithmic (func of k,ϵ)	Polynomial
N 2019	$\tilde{O}(n^{1+1/k}),$ $k \ge 2$	$\begin{array}{l} \textbf{Polylogarithmic} \\ \textbf{(func of } k, \epsilon \textbf{)} \end{array}$	Polylogarithmic

Neighborhood Covers

- W-neighborhood cover: a clustering of nodes, s.t.
 - Low diameter: Each cluster has diameter O(W log(n)).

Neighborhood Covers

- W-neighborhood cover: a clustering of nodes, s.t.
 - Low diameter: Each cluster has diameter O(W log(n)).
 - Ball preservance: For each node v, W-neighborhood (ball of radius W) around v is contained in a cluster.

Neighborhood Covers

W-neighborhood cover: a clustering of nodes, s.t.

- Low diameter: Each cluster has diameter O(W log(n)).
- Ball preservance: For each node v, W-neighborhood (ball of radius W) around v is contained in a cluster.
- Low congestion/overlap: Each node overlaps with O(log(n)) clusters.

- Centralized algorithm inspired by (Cohen 2000).
- Each iteration handles pairs of nodes u,v with distances $\left(R,2R\right]$:
 - Compute *W*-neighborhood covers for $W = \epsilon R/4 \log(n)$
 - Clusters are small if their size is less than \sqrt{n} , and big otherwise.
 - Add a star rooted at the center of big clusters.
 - Add all pairwise edges (clique) between all big cluster centers.
 - A clique for each small cluster (too dense).

- Add a star rooted at the cluster center of big clusters.
 - Set weight of an edge (u,v) in H to distance between u and v in G .

- Centralized: a clique for each small clusters.
- Distributed: replaced with a hopset with constant hopbound.

Add a clique between all big cluster centers.

New sparse distributed hopset

- Goal: sparser hopset and faster construction
- For distance scale (R, 2R]:
 - Compute *W*-neighborhood covers for $W = \epsilon R/4 \log(n)$
 - Clusters are small if their size is less than \sqrt{n} , and big otherwise.
 - Add a star rooted at the center of big clusters.
 - Add a clique between all big cluster centers.
 - Locally construct a sparse hopset for each small cluster (leads to improvements in Congested Clique).

Size analysis

- For a small clusters of size in [s, 2s):
 - We added $O(s^{1+1/k})$ edges (size of local hopsets).
 - There are at most O(n/s) such clusters.
 - Summing over all size buckets: $O(n^{1+1/2k})$

Size analysis

- For a small clusters of size in [s, 2s):
 - We added $O(s^{1+1/k})$ edges (size of local hopsets).
 - There are at most O(n/s) such clusters.
 - Summing over all size buckets: $O(n^{1+1/2k})$
- Star edges for each big cluster:
 - adds at most $O(\log(n))$ forests for each scale.

Size analysis

- For a small clusters of size in [s, 2s):
 - We added $O(s^{1+1/k})$ edges (size of local hopsets).
 - There are at most O(n/s) such clusters.
 - Summing over all size buckets: $O(n^{1+1/2k})$
- Star edges for each big cluster:
 - adds at most $O(\log(n))$ forests for each scale.
- Clique edges between big cluster centers.
 - At most O(n) edges in total for each scale.
- Log factor added to cover all scales.

Hopbound and Stretch analysis

- Path of length (R,2R] divided into $O(\log(n)/\epsilon)$ equal length segments.
 - Each is contained in a cluster, (parameter of neighborhood covers is $W = \epsilon R/\log(n)$).
- Hop bound: $O(\log(n)/\epsilon)$
 - small clusters: constant hops (local hopset construction)
 - big clusters: one direct edge.

Congested Clique Implementation

Constructing W-neighborhood covers

- Known constructions are too **slow** for large W.
- Use a relaxed notion of limited neighborhood covers that can be implemented efficiently.
- Local hopsets for small clusters
 - Collecting local topology and local computation by cluster center.
 - Message routing algorithm by Lenzen (2013)
- Adding a clique between big cluster centers

- $(1 + \epsilon)$ -MSSP algorithm by Censor-hillel et al. (2019).

• Previous:

 Efficient construction of sparse hopsets in Congested Clique

• Next:

- Dynamic hopsets with applications in nearoptimal shortest path computation
- J. Łącki and **N**, Faster Decremental Approximate Shortest Paths via Hopsets with Low Hopbound.

Dynamic Model

Dynamic graph algorithms

Input changes over time (insertions or deletions)

• Goal:

- Fast queries
- small update time
- Partially dynamic
 - Insert only (incremental) or delete only (decremental)
 - This work: decremental (deletion and weight increase)

Applications of Dynamic Hopsets

• Dynamic tools:

- Even-Schiloach'81: decremental maintainenace of distance up to distance d in O(md) time.
- Can turn this to maintain hop bounded distance in O(mh) time

• Dynamic All-Pairs Distance Oracles :

- Maintain a hopset with polylogarithmic hopbound
- Use the hopset to maintain distance oracles more efficiently

Thank you! Questions?