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Publications

● Relevant papers:
– M. Dinitz and N, Massively Parallel Distance Sketches, 

Conference on Principles of Distributed Systems 
(OPODIS) 2019 (best student paper).

– N, Sparse Hopsets in Congested Clique, Conference on 
Principles of Distributed Systems (OPODIS) 2019.

● Also related:
– J. Łącki and N, Faster Decremental Approximate Shortest 

Paths via Hopsets with Low Hopbound (to be submitted).
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Outline

● Models

– Background on distributed/parallel/big data models

● Introduction to hopsets

– Application in distributed distance computation

– Massively parallel distance sketches

● Distributed algorithm for constructing hopsets
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Evolution of Distributed Models

● LOCAL Model
– Given an input graph G=(V,E). Communication in 

synchronous rounds on G.

– In each round each node can send a message of unlimited 
size to each neighbor.

– Goal: Minimize rounds of communication until nodes know 
their portion of output.
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Distributed and Parallel Models

● LOCAL Model
– Given an input graph G=(V,E). Communication in synchronous 

rounds on G.

– In each round each node can send a message of unlimited size 
to each neighbor.

– Goal: Minimize rounds of communication until nodes know their 
portion of output.

● CONGEST Model
– Similiar to LOCAL but messages can have size at most O(log n).

● Parallel (PRAM) Models
– Processers read/write on registers. Goal is to minimize parallel 

rounds/depth.
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Congested Clique Model

● Input graph G=(V,E). Communication over a clique 
(all-to-all).

– Each node sends a message of size O(log n) (congestion) to 
any other node.

– Similiar to CONGEST except communication graph is 
different from input graph

– Closer to modern models, e.g. SDNs, MapReduce and 
Massively Parallel Computation models.
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Massively Parallel Computation 
(MPC)

● MPC model: An input of size N, distributed over     
P = N/S machines, O(S) memory per machine.

– Each machine has memory strictly sublinear in N. 
IO/Communication bounded by memory.

– Abstraction of big data platforms such as MapReduce, 
Spark, Hadoop, etc.
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Massively Parallel Computation
(MPC)

● MPC model: An input of size N, distributed over     
P = N/S machines, O(S) memory per machine.

– Each machine has memory strictly sublinear in N. 
IO/Communication bounded by memory.

● Low memory MPC for a graph G (m edges and n 
nodes):

– Memory per machine is                    .

– Overall memory is           .
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MPC vs distributed and parallel 
models

● Power of MPC depends

– Primarily: memory per machine 

– Secondary: number of machines
● For graphs MPC with linear in number of nodes 

memory (per machine) close to Congested Clique

– In each round each machine can send a message to 
any other machine since memory per machine is O(n)

● Closer to PRAM when memory per machine is very 
small
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Massively Parallel Computation

● Intuition: MapReduce

– Input: <key, value> pairs

– Map and shuffle: pairs go to machine based on their key

– Reduce: Sequential computation on one key (local 
computation on a machine)

● Example: Given a graph G=(V,E), compute an aggregate 
function over edges of a node (degree, lightest edge)

– Sort the input (pairs (u,v)) based on ID of the first vertex

– Pairs incident to u are in a contigious set of machines

– Find the minimum over these machines based on an 
aggregate tree
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● Previous:
– Distributed/Parallel/Big Data Models

● Next:
– Distributed Shortest Paths
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Shortest Path Computation

● Single-source shortest paths:

– Given an undirected weighted graph G=(V,E), and a 
source node s, compute (approximate)  distances from 
s to all nodes in V.

● Variants: 

– Single-source (SSSP), Multi-source (MSSP), all-pairs 
(APSP)
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Shortest Path Computation

● Shortest path algorithms

– Dijksta’s: very sequential, not parallelizable
● Simple parallel/distributed algorithm: 

– For unweighted graphs run BFS.

– For weighted graphs, run Bellman-Ford.

– Slow for graphs with large diameter, so we need a new 
tool.
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Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Each iteration: each node updates their distance 
estimate from the source s by computing
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Distributed Bellman-Ford

● Distributed Bellman-Ford:

– Each iteration: each node updates their distance 
estimate from the source s by computing

– Each iteration can be performed in one round of 
Congested Clique or MPC

● Congested Clique: Need to send only one message 
of O(log n) bits for each edge 

● MPC: Aggregate tree idea
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 Bellman-Ford

● Bellman-Ford from single source   :

–     iterations to compute                  (distance using 
paths of at most    hops)  for all          .

– Require                 iterations          is the shortest path 
diameter:

● Maximum number of hops in the shortest paths.  Could 
be as large as          .
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Hopsets

● Given a weighted undirected graph                    , 
for any :

–               : shortest path distance between u and v in G.

–                : shortest path with at most     hops (number 
of edges) between u and v. 

● Given a                     , a        -hopset     is a set of 
edges, s.t. between every pair of nodes       :

– hopbound:      

– Approx factor:  
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Hopsets

● Given                    , a        -hopset     is a set of 
edges, s.t. between every pair of nodes       :

– Intuition: adding hopset edges is like adding shortcuts 
for reducing the diameter.
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Hopsets

● Application: Given a         -hopset H for G, we can 
compute approximate distances in    dist rounds.

– Run Bellman-Ford for     rounds to obtain approximate 
distances (                  ).

● Goal: 

– a sparse hopset, with small hopbound, often 
polylogarithmic in n, and fast construction.

– Tradeoffs based on existential lower bounds

                      



20

 

● Previous:
– Intro to hopsets, and application in shortest 

path computation via Bellman-Ford.

● Next:
– Using hopsets for computing 

distributed/parallel distance sketches
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Distance Sketches

● Distance sketches for a graph:

– Small information stored for each node, such that 
approximate distance of a pair u, v of nodes can be  
queried only using sketches of u and v.

● Existing Distance Sketches (Thorup-Zwick 05):

– Size:               per node. 

– Stretch:              (approximation factor) 

– Query time (sequential):

– Distributed/MPC query time: only 2 rounds! 
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Distance Sketches in MPC 

● Distance sketches in MPC:

– Distributed algorithm by Das Sarma et al (2015) will 
take                         rounds.

– Using hopsets we can compute distance sketches in      
               rounds of MPC.

● Can we construct distance sketches in 
polylogarithmic rounds?

– Yes, at the cost of a weaker stretch using spanners.
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MPC Distance Sketches

Results  Size per node Stretch Time (rounds)

Das Sarma et al. 
(2015)

 

 DN 2019   

 DN 2019 Polylogarithmic
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● Previous:
– Using hopsets for computing massively parallel 

distance sketches

● Next:
– Sparse hopsets in Congested Clique
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Sparse Hopsets in Congested Clique

● Goal: Distributed algorithm for constructing a 
sparse hopset

– Relevant paper: N, Sparse Hopsets in Congested Clique 
(OPODIS 2019).

– Polylogarithmic round algorithm for sparse hopsets with 
polylogairthmic hopbound in the Congested Clique model
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Congested Clique Model

● Given a graph G=(V,E), each node can send a 
message of size O(log n) (congestion) to any other 
node.

– Initially each node knows the incident portion of the input, 
and should know incident part of the output.

– Goal: minimize rounds of communication.
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Hopsets in Congested Clique

Results  Size Hopbound Time (rounds)

Censor-Hillel et 
al. (2019)

Polylogarithmic

Elkin-Neiman
(2017, 2019)

Polylogarithmic
(func of        )

  Polynomial

 N 2019 Polylogarithmic
(func of        )

Polylogarithmic
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Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).
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Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).

– Ball preservance: For each node v, W-neighborhood (ball of radius 
W) around v is contained in a cluster.

                      

v
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Neighborhood Covers

● W-neighborhood cover: a clustering of nodes, s.t.

– Low diameter: Each cluster has diameter O(W log(n)).

– Ball preservance: For each node v, W-neighborhood (ball of radius 
W) around v is contained in a cluster.

– Low congestion/overlap: Each node overlaps with O(log(n)) clusters.
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Hopset construction 

● Centralized algorithm inspired by (Cohen 2000).

● Each iteration handles pairs of nodes u,v with 
distances             :

– Compute    -neighborhood covers for                         .

– Clusters are small if their size is less than      , and big 
otherwise.

– Add a star rooted at the center of big clusters.

– Add all pairwise edges (clique) between all big cluster 
centers.

– A clique for each small cluster (too dense). 
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Hopset construction

● Add a star rooted at the cluster center of big clusters.
● Set weight of an edge (u,v) in H to distance between u and v in G .
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Hopset construction

● Centralized: a clique for each small clusters.
● Distributed: replaced with a hopset with constant hopbound.
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Hopset construction

Add a clique between all big cluster centers.
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New sparse distributed hopset

● Goal: sparser hopset and faster construction

● For distance scale           :

– Compute     -neighborhood covers for                         .

– Clusters are small if their size is less than      , and big 
otherwise.

– Add a star rooted at the center of big clusters.

– Add a clique between all big cluster centers.

– Locally construct a sparse hopset for each small 
cluster (leads to improvements in Congested Clique). 



36

Size analysis

● For a small clusters of size in         :

– We added                  edges (size of local hopsets).

– There are at most             such clusters.

– Summing over all size buckets: 
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Size analysis

● For a small clusters of size in         :

– We added                  edges (size of local hopsets).

– There are at most             such clusters.

– Summing over all size buckets: 
● Star edges for each big cluster:

– adds at most                 forests for each scale.
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Size analysis

● For a small clusters of size in         :

– We added                  edges (size of local hopsets).

– There are at most             such clusters.

– Summing over all size buckets:                    
● Star edges for each big cluster:

– adds at most                 forests for each scale.
● Clique edges between big cluster centers.

– At most          edges in total for each scale.
● Log factor added to cover all scales.
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Hopbound and Stretch analysis

● Path of length (R,2R] divided into                   equal 
length segments.

– Each is contained in a cluster, (parameter of neighborhood 
covers is                            ).

● Hop bound: 

– small clusters: constant hops (local hopset construction)

– big clusters: one direct edge.   

... W WWWW
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Congested Clique Implementation

● Constructing W-neighborhood covers

– Known constructions are too slow for large W. 

– Use a relaxed notion of limited neighborhood covers 
that can be implemented efficiently.

● Local hopsets for small clusters

– Collecting local topology and local computation by 
cluster center.

– Message routing algorithm by Lenzen (2013)
● Adding a clique between big cluster centers

–           -MSSP algorithm by Censor-hillel et al. (2019).



44

 

● Previous:
– Efficient construction of sparse hopsets in 

Congested Clique

● Next:
– Dynamic hopsets with applications in near-

optimal shortest path computation
– J. Łącki and N, Faster Decremental Approximate Shortest Paths 

via Hopsets with Low Hopbound.
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Dynamic Model

● Dynamic graph algorithms

– Input changes over time

(insertions or deletions)
● Goal:

– Fast queries

– small update time
● Partially dynamic 

– Insert only (incremental) or delete only (decremental)

– This work: decremental (deletion and weight increase)
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Applications of Dynamic Hopsets

● Dynamic tools:
– Even-Schiloach’81: decremental maintainenace of 

distance up to distance d in O(md) time.

– Can turn this to maintain hop bounded distance in 
O(mh) time

● Dynamic All-Pairs Distance Oracles :
– Maintain a hopset with polylogarithmic hopbound

– Use the hopset to maintain distance oracles more 
efficiently



47

Thank you! 
Questions?
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