
Exact Dynamic Triangle Counting
Reading Group Algorithms Companion Paper

Daniel Schmitt

February 14, 2022

Abstract

In this paper, we consider the problem of counting and enumerating all triangles in a graph.
A recent result by Kara et al. [8] maintains the number of triangles under edge insertions and
deletions and allows enumeration of all triangles with constant delay. Their algorithm was
formulated for relational database systems using concepts of incremental view maintenance
and fractional databases to perform the updates. We simplify and formulate their algorithm
using typical terms and concepts of graph theory.

1 Introduction

Graphs are often the prefered representation for technological, biological, and sociological systems.
Web graphs are used to represent websites and hyperlinks between them. Social graphs represent
users and their interactions. Such graphs are often analyzed using the local clustering coefficient
or the transitivity ratio that both require counting triangles in the graph. Other applications of
triangles include community detection, spam detection, and recommender systems. For a larger
list of applications of triangles in graphs, we refer to Tsourakakis et al. [14].

In addition to the exact, dynamic, and sequential setting that we consider in this paper, other
settings have also been broadly studied. The fastest static algorithm for exact triangle counting is

the method by Alon et al. [2] that runs in O(m
2ω

ω+1) time, where ω is the exponent of fast matrix
multiplication (ω < 2.3729 [1]). The approximate triangle counting problem has been extensively
studied (e.g., [4, 11]) in the streaming model, where one or a constant number of passes over E are
allowed. In dynamic graph streams, the streams can include both edge insertions and deletions [3].

In this paper, we consider the recent algorithm by Kara et al. [8] that was formulated for
relational database systems. Inside the database, we store three relations R[a, b], S[b, c], T [c, a]
and want to count or enumerate all a, b, c such that the tuples (a, b) ∈ R, (b, c) ∈ S, and (c, a) ∈ T .
This can be regarded as a tripartite graph with edge sets R, S, and T , where each relation connects
nodes of two different partitions. The authors show that both the total number of triangles ∆0

and the possibility of enumerating all triangles ∆3 in the graph can be maintained under edge
insertions and deletions in sublinear time O(m

1
2), where m is the number of edges. It is easy to

see that the problem of triangle counting and enumeration for tripartite graphs is the same as in
general graphs.

Lemma 1. The problems of finding and enumerating all triangles in general graphs and in tripar-
tite graphs are identical.

Proof. It is obvious that any algorithm solving the problems in a general graph can also solve the
problems in tripartite graphs. For the other direction, we use a common trick in triangle counting.
For a given general undirected graph G = (V,E), we from a new graph G′ by creating three copies
of its nodes V1, V2, V3 and a new edge set E′. Now, to avoid overcounting triangles, we “orient”
the undirected edges (u, v) using any order < on the nodes. For each (u, v) ∈ E, we only add edges
(u1, v2), (u1, v3), and (u2, v3) between the copies u1 ∈ V1, u2 ∈ V2, v2 ∈ V2, v3 ∈ V3, if u < v.

1

a1 b1

c1 d1

V1

a2 b2

c2 d2

V2

a3 b3

c3 d3

V3

Figure 1: Reduction of a graph to a tripartite graph using the order a < b < c < d. The original
edges are drawn in black. The new edges between V1 and V2, V1 and V3, and V2 and V3 are drawn
in red, blue, and green, respectively.

Obviously, G′ is tripartite. For any triangle in G, we can order its nodes from smallest to largest
(u, v, w). Therefore, we can find the triangle (u1, v2, w3) in G′. On the other hand, every triangle
in G′ has to be of the form (u1, v2, w3) with u1 < v2 < w3, thereby corresponding to exactly one
triangle in G. An example is shown in Figure 1.

This allows us to use the main result from Kara et al. [8] in general graphs.

Theorem 1 (Kara et al. [8]). There exists an algorithm that can preprocess a graph G = (V,E)

with n = |V | and m = |E| in O(m
3
2) time, uses O(m

3
2) space, allows insertions and deletions

to G in amortized O(m
1
2) time, and allows finding the number of triangles in constant time or

enumerating all triangles in time proportional to the number of triangles in G.

2 Dynamic Triangle Counting in General Graphs

As we have seen, the algorithm by Kara et al. [8] that was formulated for relational database
systems can be used to find and count all triangles in general graphs. In this section, we adapt their
algorithm to work in general graphs without any reduction. We reuse their idea of ε-partitioning
the nodes into sets of nodes with low and high degree.

Definition 1 (ε-Partition). Let ε ∈ [0, 1]. The nodes of an undirected graph G = (V,E) with
n = |V | and m = |E| are ε-partitioned into a heavy part H and a light part L, if m̂

4 ≤ m < m̂, all
nodes v ∈ H have degree deg(v) ≥ 3

2m̂
ε, all nodes v ∈ L have degree deg(v) < 1

2m̂
ε, H ∩ L = ∅,

and H ∪ L = V . This partiton can be constructed in O(n) time.

m̂ is used as an estimation of m to avoid changing the degree threshold after every edge update
that changes m. As already seen in Theorem 1, setting ε = 1

2 minimizes the complexity. For
simplicity, we will only consider this case. Since the sum over all node degrees is 2m, the size of
H is bounded from above by 4m

3m̂
1
2

= O(m
1
2). Also, every node in L has at most 1

2m
ε = O(m̂

1
2)

neighbors. We partition the edges (u, v) ∈ E into the sets HH,HL,LH,LL, where u and v are of

2

w ∈ Hu ∈ H

v3 ∈ L
v2 ∈ L

v1 ∈ L

(a) P2 contains all paths of length 2. For
∆0, we only store the number of paths from
u to v as the label of (u, v) in P2. For ∆3,
we store a single edge (u, v) multiple times
with different labels v1, v2,

w ∈ Hu ∈ H

v? ∈ L

(b) C3 contains all edges that are part of a
cycle of length 3, i.e., a triangle. (u,w) is
stored in C3, as there is a v that closes the
cycle, but the v is unknown in C3.

Figure 2: Auxiliary datastructures used for ∆0 and ∆3

high degree, u is of high and v of low degree, u is of low and v is of high degree, and both u and v
are of low degree, respectively.1

We assume that the following operations can be performed on the graph datastructure and the
edge partitions HH,HL,LH,LL:

1. Check whether a given node u is in H or in L in O(1).

2. For two given nodes u, v, check whether u and v are adjacent in O(1).

3. Enumerate all neighbors of a given node u in O(deg(u)) and find deg(u) in O(1).

4. Find, insert, and delete edges in O(1).

The graph datastructure and the edge partitions can be implemented, e.g., using hash tables
instead of adjacency lists to allow those operations in expected constant time. Otherwise, balanced
search trees allow all operations to be performed in worst-case logarithmic time, as critiqued by
Lu et al. [10].

Additionally, we will use an auxiliary datastructure P2 that stores all paths of length 2 (u, v, w)
with u,w ∈ H, v ∈ L. Figure 2a shows a visualization of P2. These 2-paths are often called wedges
and are also used in triangle approximation (e.g., [9, 13]). We will use this datastructure when
inserting or deleting edges (u,w), where both u and w are heavy nodes. Depending on whether we
only want to count the number of triangles (∆0) or enumerate them (∆3), P2 either has to only
store the number of paths from u to w or all v that are on the paths from u to w. In any case, we
can think of P2 as an edge-labeled (multi-)graph, where the edge labels are either positive numbers
(∆0) or nodes (∆3) and allowing the same operations as described for the graph data structure

including finding the edge labels. P2 can be initialized in O(m
3
2) time and space by iterating over

all edges (u, v) ∈ HL and for each v finding all edges (v, w) ∈ LH, as there are at most O(m
1
2)

neighbors for each v. For each (u, v, w), we can update the edge (u,w) in P2 by increasing the
label (∆0) or adding a new edge (u,w) with label v (∆3) in constant time.

2.1 Single Edge Updates for ∆0

Triangle Count Updates We will first consider the triangle count ∆0. We can initialize its
value by using a static triangle counting algorithm [2, 15, 12] in O(m

3
2). As adding nodes can not

result in added or removed triangles, we only have to consider edge updates and deletions. For an
insertion (u, v), we have to find all edges (v, w) and (w, u) that will form a new triangle. For a
deletion, we have to find the same edges to remove the triangles. In both cases, we consider the
following two cases to update ∆0:

1HL and LH contain the same edges and are just used for simpler notation. They do not have to be duplicated.

3

1. At least one of u or v is in L, w.l.o.g. u ∈ L: Enumerate all neighbors w of u, where w is
either in H or in L, and check whether (w, v) ∈ E. As u has at most O(m

1
2) neighbors and

the check can be performed in O(1), this case takes O(m
1
2) time.

2. Both u and v are heavy: The update for w ∈ H is simple. u can have at most O(m
1
2) heavy

neighbors w and we can check whether (w, v) ∈ E in O(1) for the same runtime as in the
first case. The update for w ∈ L is harder and requires our precomputed P2 datastructure.
We search for the edge (u, v) in P2 for the count of wedges (u,w, v) and update the triangle
count ∆0 in O(1).

Auxiliary Datastructure Updates After updating the triangle count ∆0, we also have to
update the graph and our auxiliary datastructure. We can insert/delete (u, v) into/from the
correct edge partition HH,HL,LH,LL by looking up the degree of u and v and inserting/deleting
in O(1). If u and v are from different degree partitions, we also update P2. W.l.o.g. u ∈ L, v ∈ H:

We iterate over all O(m
1
2) neighbors w of u and insert, remove or update the label of edge (w, v)

in P2.
To summarize, we can perform a single edge update in O(m

1
2) time.

2.2 Single Edge Updates for ∆3

Now, we will consider enumerating all triangles. As there can be up to O(m
3
2) triangles in the

graph, we only consider the enumeration delay, i.e., the time for finding the first triangle and the
time between each following triangle. We perform similarly as for ∆0, but initialize the set of all
triangles ∆�LL

3 , where at least two nodes are light, and the set of all triangles ∆HHH
3 , where all

nodes are heavy, instead of only the triangle count ∆0 in O(m
3
2) time and space using existing

static triangle enumeration algorithms [15, 12]. We can perform the updates to both sets using

the same strategies as for ∆0 in O(m
1
2) time. Instead of increasing or decreasing ∆0, we insert or

delete the triangle in ∆�LL
3 and ∆HHH

3 , depending on how many nodes are heavy and light.

On-The-Fly Enumeration for ∆HHL
3 The remaining triangles in ∆HHL

3 are of the form
(u, v, w), where u,w ∈ H, v ∈ L. In addition to P2, we now require an additional auxiliary datas-
tructure C3 visualized in Figure 2b that stores all edges (u,w), if (u,w) ∈ HH and (u,w) ∈ P2.
In other words, if (u,w) ∈ C3, there exists both a path of length 1 and a path of length 2 from u
to w, i.e., there exists a triangle containing u and w. We can initialize C3 after initializing P2 by
computing the intersection of HH and P2. As |HH| = O(m), this can be achieved in linear time
as every edge lookup is performed in constant time.

Finally, we can compute the triangles in ∆HHL
3 on-the-fly with constant enumeration delay

using the following strategy: For each edge (u, v) in C3, perform a lookup for (u, v) in P2 and yield
all triangles (u,w, v) for all labels w found for edges (u, v) in P2. As the lookup requires O(1) time
and only returns nodes that close the cycle, the delay between finding triangles is constant.

Auxiliary Datastructure Updates For each edge update (u, v), where u and v are from
different degree partitions, w.l.o.g. u ∈ L, v ∈ H, we might have to insert (resp. delete) edges in P2

and C3. For updating P2, we proceed as for ∆0, iterate over the neighborhood of u of size O(m
1
2),

and insert (resp. delete) edges with label u in P2 instead of changing the label to reflect the new

number of paths. Afterwards, for each of the at most O(m
1
2) updated edges (u, v) in P2, we can

perform a lookup in HH to also insert or delete (u, v) in C3, if such an edge exists.
For each edge update (u, v), where both u and v are heavy, we only have to perform a lookup

in P2 to check if there exists a path from u to v of length 2 and insert or delete the edge (u, v) in
C3.

To summarize, we can perform a single edge update in O(m
1
2) and enumerate all triangles in

time only proportional to the number of triangles in the graph.

4

2.3 Performing Multiple Updates

Until now, we only discussed single edge updates. After multiple updates, it might be the case
that our estimation m̂ of the actual number of edges m might fall out of the range m̂

4 ≤ m < m̂.
Additionally, edge updates can increase or decrease the degree of a node, which might change a
heavy node to a light node or vice versa. In both cases, we have to perform significantly more
work to either repartition V using a new threshold (major rebalancing) or delete a node from one
partition and add it to the other (minor rebalancing). This superlinear time is, however, amortized

over multiple sublinear updates, allowing for O(m
1
2) amortized update time. As the proof by Kara

et al. [8] can be used without significant changes, we only sketch its correctness.

Lemma 2. Major rebalancing requires O(m
1
2) amortized update time.

Proof sketch. If m̂ falls out of the range m̂
4 ≤ m < m̂, we reinitialize the ε− partition and perform

initialization of all auxiliary datastructures in O(m
3
2) time. As we need Ω(m) updates between

each major rebalance, the amortized time complexity of major rebalancing is O(m
1
2).

Lemma 3. Minor rebalancing requires O(m
1
2) amortized update time.

Proof sketch. If a heavy node u becomes a light node or vice versa, we have to delete and reinsert
its adjacent edges in HH,HL,LH,LL and the dependent auxiliary datastructures P2 and C3. At
the point in time when u changes its partition membership, it has degree O(m

1
2). As we have seen

for both ∆0 and ∆3, single edge updates take O(m
1
2) time, i.e., minor rebalancing takes O(m) time.

As minor rebalancing can only happen after Ω(m
1
2) updates due to the “gap” in the threshold of

light and heavy nodes, the amortized time complexity of minor rebalancing is O(m
1
2).

3 Further Work

In this section, we want to briefly discuss recent work that extends Kara et al.’s [8] algorithms and
ideas.

Lu et al. [10] propose an exact algorithm for dynamic triangle counting whose performance
depends on the arboricity2 α of G. For any “nicely behaved” monotonic function Γ, it requires

O

(
min

{
αm+m logm,

(
m

Γ(m)

)2
})

space, Õ(min{α + Γ(m),
√
m}) amortized update time, and

constant query time. By setting Γ(m) =
√
m, this reconstructs the result of Kara et al. [8].

For planar graphs, α is constant [7], therefore, their algorithm achieves O(m logm) space, Õ(1)
amortized update time, and O(1) query time on this class of graphs.

Hanauer et al. [6] use the idea of ε-partitioning to count the number of occurences of all
connected patterns consisting of four vertices. Different patterns have different time and space
complexities. Paths of length 3, for example, require O(

√
m) time and linear space, whereas

cliques of size 4 use linear time and quadratic space in m.
Dhulipala et al. [5] parallelize and extend the sequential algorithm of Kara et al. [8] to allow

for batch updates, whereas the original algorithm only allowed for single edge updates at a time.
Their algorithm requires O(∆

√
∆ +m) amortized work and O(log∗(∆ + m))3 depth4 with high

probability, where ∆ is the number of edge insertions and deletions, matching the original update
time for ∆ = 1, but allowing for parallel execution of updates.

2The arboricity of a graph is the minimum number of spanning forests required s.t. their union is equal to the
graph. It is bounded from above by O(

√
m), but it can be significantly smaller. See, e.g., [7]

3log∗ is the iterated logarithm. It is smaller than five for all inputs of size ≤265536.
4Depth refers to the longest sequential dependence in the computation. Given an infinite number of processors,

this is identical to the processing time.

5

4 Conclusion

In this paper, we have adapted the exact, dynamic, and sequential algorithm for maintaining the
triangle count and enumeration of all triangles by Kara et al. [8] for general graphs using methods
and concepts of graph theory. Their idea of partitioning nodes based on their degree is often seen
in dynamic algorithms. We have also briefly discussed recent developments of algorithms that
either extend their work or use the idea of degree-based node partitioning for similar problems.

References

[1] Josh Alman and Virginia Vassilevska Williams. “A refined laser method and faster matrix
multiplication”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2021, pp. 522–539.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. “Finding and counting given length cycles”. In:
Algorithmica 17.3 (1997), pp. 209–223.

[3] Laurent Bulteau et al. “Triangle counting in dynamic graph streams”. In: Algorithmica 76.1
(2016), pp. 259–278.

[4] Luciana S Buriol et al. “Counting triangles in data streams”. In: Proceedings of the twenty-
fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2006,
pp. 253–262.

[5] Laxman Dhulipala et al. “Parallel batch-dynamic k-clique counting”. In: Symposium on Al-
gorithmic Principles of Computer Systems (APOCS). SIAM. 2021, pp. 129–143.

[6] Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. “Fully dynamic four-vertex sub-
graph counting”. In: arXiv preprint arXiv:2106.15524 (2021).

[7] Frank Harary. Graph theory. Addison-Wesley, 1991. isbn: 978-0-201-02787-7.

[8] Ahmet Kara et al. “Maintaining triangle queries under updates”. In: ACM Transactions on
Database Systems (TODS) 45.3 (2020), pp. 1–46.

[9] Konstantin Kutzkov and Rasmus Pagh. “Triangle counting in dynamic graph streams”. In:
Scandinavian Workshop on Algorithm Theory. Springer. 2014, pp. 306–318.

[10] Shangqi Lu and Yufei Tao. “Towards Optimal Dynamic Indexes for Approximate (and Exact)
Triangle Counting”. In: 24th International Conference on Database Theory (ICDT 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021.

[11] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. “Better algorithms for counting tri-
angles in data streams”. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems. 2016, pp. 401–411.

[12] Hung Q Ngo et al. “Worst-case optimal join algorithms”. In: Journal of the ACM (JACM)
65.3 (2018), pp. 1–40.

[13] Thomas Schank and Dorothea Wagner. “Approximating clustering coefficient and transitiv-
ity.” In: Journal of Graph Algorithms and Applications 9.2 (2005), pp. 265–275.

[14] Charalampos E Tsourakakis, Mihail N Kolountzakis, and Gary L Miller. “Triangle Sparsi-
fiers.” In: J. Graph Algorithms Appl. 15.6 (2011), pp. 703–726.

[15] Todd L. Veldhuizen. “Triejoin: A Simple, Worst-Case Optimal Join Algorithm”. In: ICDT.
2014.

6

