
A Deterministic ”Folklore” Algorithm for Decremental APSP in

Weighted, Directed Graphs

Mara Grilnberger

February 14, 2022

Abstract

In this paper, we give a detailed description to a well known deterministic ”folklore” algorithm
which maintains approximate all-pairs shortest paths in the partially dynamic decremental setting
allowing edge deletions and weight increases. This algorithm originates from a combination of
algorithms by King [1] and Bernstein [2] and is used as a component in other algorithms [3] [4].
This paper also gives a more detailed analysis of the total update time O

(
n3 log3 n log(nW)/ε

)
.

1 Introduction

Maintaining all-pairs shortest paths under dynamicity is a well studied area of research. For the
maintenance of an exact all-pairs shortest paths for fully dynamic graphs where both edge insertions
and deletions are allowed, there is a deterministic algorithm by Demetrescu and Italiano [5]. In
the partially dynamic setting, there exists a deterministic algorithm by Ausiello et al. [6] for the
incremental and the randomized algorithm by Baswana et al. [7] for the decremental case. These two
algorithms have a total update time of O(n3W) where W denotes the highest weight in the graph.
This paper focuses on the description of a (1 + ε)-approximate all pairs shortest paths algorithm with
a total update time of O(n3 log(W)/ε). This algorithm is considered ”folklore” [3] and employs a kown
method by King [1] to recursively build a Graph containing edges for paths that previously needed 2
hops. Then an algorithm of Bernstein[2], that maintains a SSSP -Tree for each vertex in the graph is
used to estimate the lengths of the paths. This paper focuses on a detailed description and analysis
of this folklore algorithm. First we give a few preliminaries, follwed by a description of the base
algorithms and concepts. Then we give an explaination of the algorithm followed by a more detailed
analysis following the description in [3].

2 Preliminaries

In this paper we will consider weighted directed Graphs G = (V,E) where n denotes the number of
vertices. We only consider the decremental setting in this paper. The weight of an edge (u, v) in G is
given by wG(u, v) and w ∈ N is the maximum weight of an edge (u, v) ∈ E at any point in time during
the update sequence. Similarly, let W ∈ N be the maximum edge weight and the ratio R is then given
by W/w. For any pair of vertices u, v ∈ V δ(u, v) describes the distance from u to v in G. The h-hop
distance is defined as follows

1

Definition 1 (h-hop distance δhG(u, v)). For a graph G = (V,E) and for a pair of nodes u, v ∈ V ,
δhG(u, v,) is the length of the shortest path from u to v in G that contains at most h edges.

3 Algorithm

3.1 Bernsteins h-SSSP Algorithm

First let us describe the exact SSSP algorithm by King [1], where distances are maintained up to a
distance d.The algorithm maintains a shortest path tree from s up to a distance d and is used in the
h-SSSP algorithm to be described later. Each vertex in the graph can be in one of three states at any
given time:

� uncertain when the distance to the startnode s might have changed

� changed once it is certain that the distance increased but the new distance has not been computed
yet

� settled once the distance has been updated and the shortest path tree to this node has been
repaired similarly to Dijkstra’s SSSP algorithm

For each vertex v, l(v) denotes the distance from the source node s to v at the time the shortest path
tree was restored after the last update. Once this distance becomes larger than d, it is set to ∞.
Further, we maintain the set Predv of neigbours w such that the edge (v, w) is not in the shortest path
tree and the status of w is settled or uncertain. The distance of a prospective new shortest path to v
via such an alternate edge d(v) = minw∈Predv l(w) + wG(w, v) is computed and saved for each vertex
as well.
The algorithm maintains a min-heap H containing vertices that need to be examined after an update.
Once an edge (u, v) is deleted, the node v becomes uncertain and is added to H with the old distance
to s, l(v) as the key. Then until the heap is empty, the node w with the smallest distance-estimate
as key is retreived. If the estimate is larger than d, the estimate for all other nodes still in H is even
larger and can therefore be set to ∞ and the algorithm is done. Otherwise, if w is uncertain, we check
if key(w) = d(w) i.e. there is an alternate edge connecting w to the shortest path tree so that the
distance from s to w remains unchanged, the edge to the vertex v that minimizes d(w) is added to the
tree. As a result v is removed from Predw and w is added to the set Predz of all its neighbours z.
If there is no such alternate edge, w is removed from Predz for each neighbour z such that (w, z) is
an edge in the shortest path tree and w is reinserted to H with the updated distance-estimate d(w).
Finally, the edges to all children of w in the tree are removed and they are made uncertain and also
added to the heap to be examined in the future. When a changed node w is retreived from the heap,
the new edge that minimizes the nodes distance to s is reinserted to the tree, the edge is removed
from Predw then the neighbours Pred-sets are updated and finally the estimate l(w) is updated to
the value of d(w). In this way the shortest path tree is either repaired when an alternate path to the
nearest non-tree node exists that maintains the distance or it is rebuilt step-by-step from the nearest
node that is no longer in the tree following the deletion.
If the weight of an edge (u, v) is increased, the same method is used but first u is inserted into Predv,
so that the edge with the new weight is considered again when finding the new shortest path to v. An
exact description and pseudocode can be found in [1]

2

Next let us describe the concept of the h-SSSP algorithm from [2] that is used as a building block
in the ”folklore” algorithm. To achieve the run times mentioned in the this paper a more complicated
version of the algorithm needs to be used. It maintains distances from a start node s to every v ∈ V in
a decremental setting for paths with at most h hops. The algorithm maintains a set of Datastructures
h-SSSPk, where h-SSSPk for a fixed k contains a (1 + ε)-approximation for those distances between
vertices u, v where 2k ≤ δh(u, v) ≤ 2k+1, for other distances the approximation can be worse. By
maintaining such a datastructure for every k from blog(w)c to dlog(nW)e it can be guaranteed that
a good approximation for each distance in the graph is maintained for some k. Each h-SSSPk is
maintained by first creating a new graph Gk = (V,Ek) from the input graph G:

Ek = {(u, v) ∈ E|wG(u, v) ≤ 2k+1}

and scaling the weights for an edge (u, v) ∈ Ek

wGk
(u, v) =

⌈
wG(u, v)

α

⌉
where α =

ε2k

h

On this new graph with smaller weights the algorithm by King [1] as described earlier is used, computing
SSSP up to a certain distance d where d is set to

⌈
4h
ε

⌉
. Multiplying the results by α gives the distance

estimates for a fixed k. Let δ′k(v) be the distance estimate for δhG(s, v) maintained by h-SSSPk. The
minimum over all such δ′k(v) for blog(w)c ≤ k ≤ dlog(nW)e is the overall distance estimated given by
the h-SSSP algorithm.
Since W is the largest weight of an edge at any point in the update sequence and therefore not known
from the start, it suffices to use the largest weight W ′ at the current time and update this value
throughout the update sequence [2]. Bernstein states:

Theorem 1 (h-SSSPk [2]). For a graph G = (V,E), a source node s ∈ V and k ∈ N the algorithm
decrementally maintains the distance estimate δ(s, v) ≤ δ′k(v) such that:

δG(s, v) ≤ δ′k(v) ≤ (1 + ε)δhG(s, v) if 2k ≤ δhG(s, v) ≤ 2k+1

Any such h-SSSPk can be maintained in O(mh/ε+ ∆) total update time for an ε with 0 ≤ ε ≤ 1

In the following we use the h-SSSP datastructure Di
v to refer to the set of h-SSSPk for a start

vertex v ∈ V on a graph Gi, where blog(w)c ≤ k ≤ dlog(nW)e and the minimum distance estimate
over all h-SSSPk gives the distance estimate δ′i(v).

3.2 Combined Folklore Algorithm

The algorithm as described in [3] starts by building a set of new Graphs G1, ..., Gdlogne from the input
Graph G similar to the transitive closure algorithm for unweighted graphs in [1]. G1 is simply the
same as the original graph G. Any other Gi = (V,Ei) is constructed depending on the paths with at
most 2 hops in the previous Graph Gi−1.

Ei = {(u, v) ∈ Ei−1|δ2i−1(u, v) <∞} where δhi is the h-hop distance in Gi

Gi contains an edge (u, v) for those vertices u, v that are connected by a path with at most two edges

3

in Gi−1 and at most 2i edges in the original graph G. Now n instances of the h-SSSP algorithm
(with h = 2) and corresponding datastructures Di

v, one for every vertex v ∈ V are used to maintain
the distances between nodes that are connected by no more than 2 edges. These distance estimates
are now used as weights for the new edges in Gi+1, where the quality of the approximation decreases
by a factor of (1 + ε) with every increment of i.

Algorithm 1 Algorithm using transitive closure and h-SSSP

1: ε← ε
2dlogne

Require:
2: G = G1, ..., Gdlogne were initialized as described above if G initially has edges

3: Let D1
v, ..., D

dlogne
v be corresponding h-SSSP datastructures with h = 2 for each vertex v, also

initialized
4: function Update(w, z, i)
5: Update edge (w, z) in Gi . either increase weight of edge (w, z) or delete it
6: for every vertex v in V do
7: Run h-SSSP update for Di

v where:
8: if i < dlog ne then
9: if δ′i(u) in Di

v changed then
10: if δ′i(u) has become larger than ∞ then
11: remove edge (v, u) from Ei+1 by calling Update(v,u,i+1)
12: else
13: Set weight wGi+1(v, u) to distance estimate δ′i(u) by calling Update(v,u,i+1)
14: end if
15: end if
16: end if
17: end for
18: end function

To initialize the datastructures one can initialize the distance estimates with 0 and then use the
Update function to increase the edgeweights or respectively delete the edges in an arbitrary order.
To update the distance estimates the function should be called with the following parameters: Up-
date(u,v,1). Eventually the recursion will terminate since an Update to the ”highest” Graph Gdlogne

does not change any other graph. Then Dlogn contains (1 + ε) approximate distance estimates for the
distances in G after the last update.

3.3 Resulting Approximation

First the distance estimate δ′dlogne(u, v) in D
dlogne
u after the update procedure completes, is indeed a

(1 + ε)-approximation of δG(u, v). For any pair of nodes u, v ∈ V Di
u for v ∈ V maintains a distance

estimate from u to v δ′i(v) (also described as δ′i(u, v) in the following) such that:

δG(u, v) ≤ δ′i(u, v) ≤ (1 + ε′)iδ2
i

G (u, v) (1)

The proof is by induction on i. First we consider the base case where i = 1. Let u, v ∈ G = G1,
δ′i(u, v) is given by the minimum δ′i,k(v) of all h-SSSPk datastructures in D1

u (where blog(w)c ≤ k ≤

4

dlog(nW)e). Hence by Theorem 1 we directly get

δG(u, v) ≤ δ′1(u, v) ≤ (1 + ε′)δ2G(u, v).

Now consider the induction step where i ≥ 2:
Assume that δ′i(u, v) ≤ ∞ otherwise the claim holds since then there is no path of length at most 2
in Gi from u to v. Hence there is no vertex w such that δ′i−1(u,w) ≤ ∞ and δ′i−1(w, v) ≤ ∞ also
δ′i−1(u, v) = ∞ and by the induction Hypothesis the right side of the inequality follows. Then there
exists a path from u to v with at most 2i edges in G. Let q be an arbitrary but fixed u - v path with
≤ 2i edges in G. Then q consists of two subpaths q1 from u to some vertex w and q2 from w to v,
where q1 and q2 consist of ≤ 2i−1 edges each. By the induction hypothesis we get

δG(u,w) ≤ δ′i−1(u,w) ≤ (1 + ε′)i−1δ2
i−1

G (u,w)

and similarly

δG(w, v) ≤ δ′i−1(w, v) ≤ (1 + ε′)i−1δ2
i−1

G (w, v).

Hence from Theorem 1 we get

δ′i(u, v) ≤ (1 + ε) (δGi(u, v))

≤ (1 + ε)
(
δ′i−1(u,w) + δ′i−1(w, v)

)
≤ (1 + ε′)i

(
δ2

i−1

G (u,w) + δ2
i−1

G (w, v)
)

≤ (1 + ε′)i lengthG(q)

Since this also holds for the shortest path from u to v the right inequality of (1) holds. Distances in
the graph are also never underestimated by a δ′i(u, v) since for 1 < i ≤ dlog ne all edge weights in the
graph Gi are given by (1 + ε)-approximations of 2-hop distances (that are always larger or equal to
the actual distances in Gi) from u to v in the previous graph Gi−1 by Theorem 1. Since any shortest
path in G can have at most n hops, for a distance estimate δ′dlogne(u, v) produced by the h-SSSP

datastructure D
dlogne
u on Gdlogne we have

δG(u, v) ≤ δ′dlogne(u, v) ≤ (1 + ε′)dlogneδ2
dlog ne

G (u, v)

= (1 + ε′)dlogneδG(u, v).

Since ε′ was chosen as ε
2dlogne similarly to [8] it follows

δ′dlogne(u, v) ≤ eε/2δG(u, v).

Because ε ∈ (0, 1) we get

δ′dlogne(u, v) ≤ (1 + ε)δG(u, v).

Therefore the distance estimate maintained by the algorithm is indeed a (1 + ε) approximation.

5

3.4 Analysis

Now consider the total update time (as described in [3]) of this algorithm for a number ∆1 updates
that are direct changes to G and its n Datastructures D1

v for v ∈ V . First we need to determine how
often a change to a given h-SSSPk that is part of some Datastructure Di

v is made. Since the h-SSSP

algorithm runs on the graph Gi
′

with the scaled down weights and as described only distances up to
d4h/ε′e where h = 2 are maintained by the datastructure. Because distances can only increase and
edge weights are positive integers a distance estimation δ′k(u) resulting from h-SSSPk in Di

v can change
at most d8/ε′e times. Since k takes on O(log(nR)) values the distance estimates from the source node
v to any other node, maintained in Di

v, change O (n log(nR)/ε′) times in total.
Since we maintain such a datastructure for every graph Gi where 1 ≤ i ≤ dlog ne and any vertex
v ∈ V the number of changes in a gaph G1 where i > 1 to some distance estimation in the algorithm
is bounded by O

(
n2 log2 n log(nR)/ε′

)
.

Changes in the distance in one Datastructure Di
v cause updates in the Datastructures for the next

Graph Gi+1. For dense graphs the h-SSSP algorithm has a total update time of

O
(
n2h log n log(nW)/ε+ ∆

)
[2]

since the number of edges in all Gi is bounded by n2 (∆ here is the total number of updates to
the graph h-SSSP is run on). We run this algorithm for every Graph Gi and every vertex in each
of those graphs where the total number of updates for all of those algorithm instances is bound by
n∆1 + O

(
n2 log2 n log(nR)/ε′

)
. If we assume that ∆1 ∈ O(n2 log(W)/ε)) we get that all updates run

in time

O
(
n3 log2 n log(nW)/ε′

)
.

By the definition of ε′ the total update time stated in [8] is given by:

O
(
n3 log3 n log(nW)/ε

)
.

3.5 Conclusion

In this paper, we have given a more detailed description and analysis of the (1 + ε)-approximate
partially dynamic all-pairs shortest path folklore algorithm for the decremental setting. The algorithm
works by first taking the input graph G and creating a set of graphs incrementally by adding edges
to a graph, with the same vertices, that connect those vertices that have a path of length at most
2 between them in the previous graph. The last graph then contains an edge from every vertex to
every other in the original graph reachable vertex. The distances in the last graph are maintained by
running the h-SSSP with h = 2 algorithm for every node on all these Graphs, updating the weights
in the next graph accordingly. The total update time of the algorithm is in O

(
n3 log3 n log(nW)/ε

)
.

References

[1] V. King, “Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure
in digraphs,” Foundations of Computer Science, 1975., 16th Annual Symposium on, 09 1999.

[2] A. Bernstein, “Maintaining shortest paths under deletions in weighted directed graphs,” in Proceed-
ings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, ser. STOC ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 725–734.

6

[3] A. Karczmarz and J. La̧cki, “Reliable hubs for partially-dynamic all-pairs shortest paths in directed
graphs,” ArXiv, vol. abs/1907.02266, 2019.

[4] A. Karczmarz, “Decrementai transitive closure and shortest paths for planar digraphs and beyond,”
in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, A. Czumaj, Ed. SIAM, 2018, pp. 73–92.

[5] C. Demetrescu and G. Italiano, “A new approach to dynamic all pairs shortest paths,” J. ACM,
vol. 51, pp. 968–992, 01 2004.

[6] G. Ausiello, G. Italiano, A. Marchetti-Spaccamela, and U. Nanni, “Incremental algorithms for
minimal length paths.” Journal of Algorithms, vol. 12, pp. 615–638, 12 1991.

[7] S. Baswana, R. Hariharan, and S. Sen, “Improved decremental algorithms for maintaining transitive
closure and all-pairs shortest paths,” Journal of Algorithms, vol. 62, pp. 74–92, 04 2007.

[8] A. Karczmarz and J. La̧cki, “Simple label-correcting algorithms for partially-dynamic approximate
shortest paths in directed graphs,” in SOSA 2020, 2020.

7

