
Fast Approximate Optimum Matching on dynamic
graphs in practice

Martin Grösbacher,

February 14, 2022

In this paper, we conduct and evaluate experiments for computing an ap-
proximate optimum matching on dynamic graph instances. The algorithmic
approach we used is based on the Random Walker from [1] which tries to find
augmenting paths to increase the matching size. Next to comparing our re-
sults, this paper also focuses on aspects that did not get as much attention in
[1] like the impact of the number of repetitions of the Random Walker or the
performance of different settings of the algorithm on specific graph instances
as opposed to [1] where the average over many different graph instances were
taken.

1 Introduction

A matching M of a graph G = (V,E) is a subset of edges such that the vertices of each
pair of elements ofM are distinct. Applications sometimes require matchings with certain
properties like being of maximal weight in weighted graphs, touching all vertices of the
graph (i.e. perfect matching) or having maximal cardinality (i.e. optimum matchings).
Finding such matchings in graphs is a well studied combinatorial problem with a wide
variety of applications such as crossbar scheduling [2], the stable marriage problem [3]
or when computing mail delivery routes [4]. Real world applications with connections
to finding optimum matchings are found for example in two-processor scheduling [5], [6]
or the pairwise kidney exchange problem [7]. Although computing matchings with these
properties can be done in polynomial time, changes to the underlying graph in dynamic
settings would still pose a computationally expensive task if the matching would have to be
re-computed from scratch after every insertion or deletion of an edge. Hence, in the recent
years, researchers have developed algorithms to maintain matchings in dynamic settings.
Maintaining exact maximum matchings is bounded by an update time of Ω(

√
(m)) [8], [9]

and thus, research focuses mostly on maintaining approximate maximum matchings. Since
there are still not many published results from the practical perspective and performance
of these algorithms, this paper tries to complement [1] in its attempt to bridge the gap
between theory and practice for one of these algorithmic approaches for the fully dynamic
maximum matching problem. The algorithm used in this paper is based on a depth-
bound Random Walker that is initialized after each dynamic operation and tries to find
augmenting paths to increase the current matching size. After a short review of some

1

needed preliminaries, we will explain the core idea of the Random Walk based algorithm
of [1] and then present and compare our experimental evaluation and results to theirs.

2 Preliminaries

Throughout this paper we only consider G = (V,E) to be undirected, unweighted and
without parallel edges or self-loops. We set n = |V | and m = |E|. ∆ denotes the highest
degree that can be found in the current state of the graph. A matching M ⊂ E is a set
of edges where no pair of edges shares a vertex. A matching is said to be maximal, if no
edge of E can be added toM without violating the definition and a maximum cardinality
or optimum matching Mopt is a maximal matching that contains the largest number of
possible edges. An α-approximate maximum matching is a matching that contains at
least |Mopt|

α edges. We call a vertex free if it is not incident to an edge ofM and matched
otherwise. If a vertex u is matched, we call v with (u, v) ∈ M the mate of u. An
augmenting path is a cycle-free path in G where the start and end vertex are free and all
edges alternate between being edges ofM or edges of E \M. Finding augmenting paths
is crucial in maintaining optimum matchings because by simply reversing the matching
status of all the edges of the path we can effectively increase the size of the matching by
one without violating the matching definition.

3 The Random-Walk-based Algorithm

Conceptually, the Random-Walk-based algorithm works as follows: We start at a free
vertex u and randomly choose a neighbour v of u. Our further proceeding is now based
on the matching status of v: If v is free, then both u and v are free and we conclude
that both vertices are not incident to any edge of M. This means we can just match
(u, v) and the Random Walk was successful. If v is matched, we unmatch (v,mate(v)),
match (u, v) and continue the Random Walk from the mate(v). The Random Walks have
a path length of 2

ε − 1 and in theory have to be repeated ∆
2
ε
−1 log(n) times to maintain

a (1 + ε)-approximation of the optimum matching as proven by [1]. However, by depth
bounding the Random Walks we have to reverse all changes done to the matching status
of the vertices and edges if no free vertex was found within the length of the path. In
order to circumvent this problem and further improve the quality of the matching, [1]
introduced the method of ∆-settling. With this option enabled, we scan 1

ε neighbours
of each vertex visited to try to find a free vertex instead of picking a random neighbour
first. If a Walk would be unsuccessful because it exceeds the path length and the last
vertex visited was not free, we scan through all of its neighbours first instead of undoing
all changes. This requires an additional O(∆) time per vertex visited but improves the
matching results as we will show in the experimental evaluation section. Edge insertions
on G are now handled as follows:
Edge insertion. Upon inserting an edge (u, v), we differ between three cases:

1. both u and v are free: We simply match (u, v)

2. both u and v are matched: We do nothing

3. only one of u and v is matched: W.l.o.g. let this be u. We unmatch u,mate(u),

2

match (u, v) and start a random walk from mate(u) as described above. If the walk
is unsuccessful we undo all changes.

Deletions of edges can be handled similarly by doing nothing if the (u, v) was free and
scanning the neighbours of both u and v if the delete edge (u, v) was matched, trying to
find free neighbours to directly match them again. If no such neighbour can be found,
Random Walks can be started from u and/or v respectively. However since the focus
of this paper is the comparison of the results of the matching sizes on graph instances
with different parameters of the Random Walker, our experiments use random insertions
of edges only and compare the final result to the optimum matching obtained by the
algorithm of Micali and Vazirani, analogously to the first type of experiments of [1].

4 Experimental Setting

Implementation and System. The algorithm described in the previous section has
been implemented in C++ and compiled using g++ 11.2. Experiments were conducted
on one core of a machine using an AMD Ryzen 7 processor with 16GB of RAM. The graph
data structure is built as follows: Each vertex maintains a vector of edges incident to it
and each edge knows its two end points. When searching a random neighbour for u we
can simply choose a random index of the edge vector of u and via this edge we can also
retrieve the other end point. Since accessing elements via index in a vector in C++ is
constant, the neighbour search operation is constant.
Methodology. For every graph instance and different settings (choice of epsilon, en-
abling/disabling ∆-settling, Random Walk repetitions) we performed ten repetitions. We
measure both the average time and the quality of the result, i.e. the size of the matching.
We compare the matching size to the optimum matching obtained by running the algo-
rithm of Micali and Vazirani [10] on the same graph instances. An implementation of this
algorithm is available at Github and with slight adaptations was made compatible with
our input graphs1. We used this as a benchmark for all our experiments. For each graph,
we let the algorithm run for ε = 1, 0.5, 0.25, 0125 respectively and for each ε we perform
the repetitions with and without Delta-Settling. Similarly to [1] we start by invoking
the Random Walker only once for every insertion but then also test multiple invocations,
described in detail for each graph separately in the next section.
Graph Instances. Table 1 summarizes the main properties of our example graphs. These
are static graphs obtained from Stanfords large network dataset collection2. Directed
graph instances were made undirected by mirroring all edges and removing self-loops.
Dynamicity is now simulated by shuffling the edges randomly before inserting them or
undoing insertions, however the same permutation of insertions/deletions is then used for
all the experiments to have a meaningful comparison. The initial shuffle is there only to
generalize the results as if the input graphs and their edge insertions are done in order,
the results can be very different due to the nature of a graph.

1https://github.com/ggawryal/MV-matching
2https://snap.stanford.edu/data/

3

Graph n m D avg. deg Mopt
WikiTalk 2394385 5021410 9 2.097 56063
as-skitter 1696415 11095298 25 6, 54 513304

p2p-Gnutella31 62586 147892 11 2, 36 15693

Table 1: graph instances and their properties. n = |V |, m = |E|, D =diameter, avg. deg
refers to the average vertex degree andMopt to the size of the optimum matching
computed by the algorithm of Micali and Vazirani.

5 Experimental Results

In this section we show our experimental results. The figure graphs show the average of
the ten repetitions of the respective setting. For figures 1−3, the x-axis shows the different
choices of ε and the y-axis shows the size of the resulting matchings. Also, for these figures,
the top of the y-axis represents the size of the optimum matching of the respective graph
computed with [10]. “Base” refers to the algorithm being run with only one invocation
of the Random Walker per edge insertion and no Delta-Settling. “Repetitions” means
we invoked the Random Walker at least 2

ε − 1 times which is still not even close to
guaranteeing the theoretical bound of a (1 + ε) approximation as proven by [1]. The
number of repetitions actually required would be ∆

2
ε
−1 which for large graphs quickly

became computationally infeasible. However, not only do our results confirm the results
of [1] in the fact that a single repetition of the Random Walker already delivers results well
within the desired approximation in all conducted experiments, they also indicate that the
number of repetitions does make at least some small difference in the quality of the result.
“∆-Settling” means we enabled ∆-Settling, however only performed one invocation of the
Random Walker per edge insertion in this case.

4

Figure 1: Matching size results on the large WikiTalk graph of small diameter D = 9

Figure 2: Matching size results on the large as-skitter graph of higher diameter D = 25.

For the WikiTalk graph in figure 1 for example, we see that the “Repetitions” graph starts
off at around the same quality as the “Base” graph. This is not surprising as when ε = 1
then 2

ε − 1 = 1. However with smaller ε this starts to improve the result up to slightly
over 1% at the smallest ε = 0.125. For the as-skitter graph in figure 2, this difference was

5

even greater (up to 2% for ε = 0.125). We believe this is due to the fact that the as-skitter
graph is of significantly larger diameter than the WikiTalk graph which increases the
probability of finding longer augmenting paths. This is also reinforced by the differences
in the optimum matching size for these two graphs. Enabling Delta-Settling generally
significantly improved all the matching results. While the effect is not quite as significant
for ε = 1, the difference quickly becomes larger with smaller ε. This is due to the fact
that if ε = 1, then the maximum path depth 2

ε − 1 = 1 and thus we do not gain the main
advantage of Delta-Settling which would scan 1

ε neighbours of each visited vertex during
the Random Walk. However we do scan all the neighbours of the last vertex visited which
already shows improved matching results. The real advantage of Delta-Settling however is
shown with smaller ε. In Figures 1 and 2, enabling Delta-Settling with ε = 0.125 brought
us within 1% of the optimum matching size of the graphs computed by [10] even though
the Random Walker is only invoked once per edge insertion.

Figure 3: Matching size results on the smaller p2p-gnutella31 graph.

Figure 3 shows four graphs. In addition to the ones in the previous figures we have a graph
called “MaxRepetitions”. This graph refers to the algorithm used with ∆2

ε − 1 repetitions
of the Random Walker. Even for the small p2p-gnutella31 graph, the actual theoretical
bound of ∆

2
ε
−1 was computationally infeasible for ε < 1. Repeating the Random Walker

this often shows significantly improved results and for small ε got up to 0.02% close to
the optimum matching. For the other graphs in the figure, similar tendencies could be
observed as for the large graph instances of figure 1 and 2.

6

Figure 4: Time results for the runs with different settings on the as-skitter graph. The
y-axis shows the time spent in seconds.

Figure 5: Time results for the runs with different settings on the p2p-gnutella31 graph.
The logarithmically scaled y-axis shows the time spent in milliseconds.

Lastly, we show the differences in terms of time spent for the execution of the algorithm
on a large graph (figure 4) and a small graph (figure 5) respectively. In the large as-skitter
graph, repeating the Random Walker up to 2

ε −1 times has a negligible impact on the run
time as long as epsilon does not get too small. Enabling ∆-Settling does have an impact
on the run time and in relation for ε = 0.125 it increases the run time roughly by a factor
of 2. However in terms of absolute numbers this is still well within practical usage so long
as one does not deal with extremely large graphs. In the smaller p2p-gnutella31 graph,
computations for all three graphs were quite similar as the algorithm on such small graphs
in general can be executed in milliseconds for each different setting. However when using

7

a larger number of repetitions such as ∆2
ε − 1, the computation time quickly rises up to

almost a minute for ε = 0.125 which in relation is an increase in time by a factor of roughly
25. This yields that such a large number of repetitions in practice will not be applicable
except when dealing with very small input graphs.

6 Conclusion

In this paper, we showed the practical usage of a Random-Walk-based algorithm to main-
tain a (1 + ε)-approximate maximum matching on different input graphs. The style of the
implementation as well as the experimental setup were inspired by [1] and complemented
by analyzing the impact of the number of repetitions of the Random Walker as well as
analyzing the behaviour of the algorithm on specific graphs with certain properties (i.e.
graphs of small and large diameter, number of vertices or edges). For smaller graphs like
p2p-gnutella31, a large number of repetitions of the Random Walker will yield the best re-
sults while still not consuming too much computational time as long as ε does not become
too small. For small ε, the matchings computed approach over 99.9% of the size of the
optimum matching. For larger graphs of small diameter like WikiTalk, a large number of
repetitions of the Random Walker quickly becomes computationally infeasible. Therefore,
we recommend using a single repetition of the Random Walker with ∆-Settling enabled for
these type of graphs. For large graphs with large diameter like as-skitter, we would again
recommend a single Random Walk repetition per edge insertion with ∆-Settling enabled.
Although ∆-Settling does increase the run time for these graphs, this increase is negligible
so long as not dealing with very large graphs or running the algorithm with very small
ε. ∆-Settling does increase the quality of the matching significantly and should be used
when possible. This work can still be easily extended by conducting similar experiments
when including fully dynamic real world graphs featuring edge insertions and deletions or
on large and very dense real world graphs. Unfortunately, such graphs are hardly available
in practice so it might be more practical to generate them artificially. Another idea would
be to try to parallelize the Random Walks by use of threads which seems an intuitive
implementation option for such a concept.

References

[1] M. Henzinger, S. Khan, R. Paul, and C. Schulz, “Dynamic matching algorithms in
practice,” 04 2020.

[2] L. Gong, L. Liu, S. Yang, J. Xu, Y. Xie, and X. Wang, “Serenade: A parallel ran-
domized algorithm suite for crossbar scheduling in input-queued switches,” ArXiv,
vol. abs/1710.07234, 2017.

[3] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[4] J. Edmonds and E. Johnson, “Matching, euler tours and the chinese postman,” Math-
ematical Programming, vol. 5, pp. 88–124, 12 1973.

8

[5] T. Fuju and N. Ninomiya, “Optimal sequence of two equivalent processors,” Siam
Journal on Applied Mathematics - SIAMAM, 01 1971.

[6] H. N. Gabow, “An almost-linear algorithm for two-processor scheduling,” J.
ACM, vol. 29, no. 3, p. 766–780, jul 1982. [Online]. Available: https:
//doi.org/10.1145/322326.322335

[7] A. Roth, S. Tayfun, and U. Unver, “Pairwise kidney exchange,” 09 2004.

[8] A. Abboud and V. Williams, “Popular conjectures imply strong lower bounds for
dynamic problems,” Proceedings - Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS, 02 2014.

[9] T. Kopelowitz, S. Pettie, and E. Porat, “Higher lower bounds from the 3sum conjec-
ture,” in SODA, 2016.

[10] S. Micali and V. Vazirani, “An o(sqrt(|v|) |e|) algorithm for finding maximum match-
ing in general graphs,” 10 1980, pp. 17–27.

9

https://doi.org/10.1145/322326.322335
https://doi.org/10.1145/322326.322335

	Introduction
	Preliminaries
	The Random-Walk-based Algorithm
	Experimental Setting
	Experimental Results
	Conclusion

