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Goal:
 The main purpose of the article is:

•Developing an optimal cache-oblivious priority queue data structure.

•This data structure should support the usual insertion, deletion and delete min 
operations in a multilevel memory hierarchy.

•Priority Queues are a critical component in many of the best known cache-aware 
graph algorithms. this cache oblivious data structure should match in performance 
the cache-aware algorithm.

Parameters of the cache are unknown contrary 
to cache aware algorithms. 
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Introduction:
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One of the essential features of modern memory systems is that they are made up of a hierarchy 

of several levels of cache, main memory and disk. 

In order to amortize the large access time 

of memory levels far away from the 

processor, memory systems often 

transfer data between memory levels in 

large blocks. Thus it is becoming 

increasingly important to obtain high 

data locality in memory access patterns. 
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Problem:
 			The	standard	approach	to	obtaining	good	locality	is	to	design	algorithms	
parameterized	by	several	aspects	of	the	memory	hierarchy,	such	as	the	

size	of	each	memory	level,	and	the	block	size	of	memory	transfers	

between	levels.	

Unfortunately, this parameterization often leads to complex algorithms 

that are tuned to particular architectures. As a result, these algorithms are 

inflexible and not portable. 
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… and The Solution 

       Recently, the research has aimed at developing memory-hierarchy-sensitive algorithms that 
avoid any memory-specific parameterization. It has been shown that such cache-oblivious 
algorithms work optimally on all levels of multilevel memory hierarchy (and not only on a  
two-level hierarchy, as commonly used for simplicity).
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Memory Hierarchy 
      A typical hierarchy consists of a number of memory levels, with memory level l having 

size Ml and being composed of Ml/Bl blocks of size Bl. In any memory transfer from 

level l to l-1, an entire block is moved atomically. Each memory level also has an 

associated replacement strategy, which is used to decide what block to remove in order 

to make room for a new block being brought into that level of the hierarchy.

Registers

cache

main memory

secondary	memory



Registers

cache

main memory

secondary	memory

decrease       performance increase    capacity

7

Efficiency 
      Efficiency of an algorithm is 

measured in terms of the number of 

block transfers the algorithm 

performs between two consecutive 

levels in the memory hierarchy (they 

are called memory transfers). An 

algorithm has complete control over 

placement of blocks in main memory 

and on disk.
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Assumptions and Generalization
• M > B2 (the tall cache assumption).

• When an algorithm accesses an element that is not stored in 
memory, the relevant block is automatically fetched with a 
memory transfer. Optimal paging strategy - If the memory is full, 
the ideal block in memory is elected for replacement based on the 
future characteristics of the algorithm.

• Since an analysis of an algorithm in the two-level model (which 
was in common use for simulating a multilevel memory hierarchy) 
holds for any block and memory size, it holds for any level of the 
memory hierarchy. As a consequence, if the algorithm is optimal 
in the two-level model, it is optimal on all levels of the memory 
hierarchy.
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background
A priority queue maintains a set of elements each with a priority (or key) under the 
operations insert, delete and deletemin, where a deletemin operation finds and 
deletes the minimum key element in the queue. Common implementations for a 
priority queue are heap and B-tree, both support all operations in O(logBN) memory 
transfers. 

Bounds:  

• Sorting N elements requires Θ((N/B)log(M/B)(N/B)) memory transfers. 

• In a B-tree, insert/deletemin takes O(logBN) memory transfers, therefore sorting N elements 

takes O(NlogBN) memory transfers, which is a factor of (BlogBN)/(log(M/B)(N/B)) from optimal.

•  From now on, we will use sort(N) to denote (N/B)log(M/B)(N/B).
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Priority Queue(The structure)
  The priority queue data structure consists of Θ(log logN) levels whose sizes vary from N to a constant size 
c. The size of a level corresponds asymptotically to the number elements that can be stored within it. 

  For example, the i’th level from above has size   .
  The levels from largest to smallest are N, N2/3, N4/9,…, X9/4, X3/2, X, X2/3, X4/9,…, c9/4, c3/, c.

13/2 -i

N

Smaller levels store elements with smaller keys or elements that were more recently inserted. The 
minimum key element and the most recently inserted element are always in the smallest (lowest) 
level c. Both insertions and deletions are initially performed on the smallest level and may propagate 
up through the levels. 
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Elements are stored in a level in a number of buffers, which are also used to transfer 
elements between levels. Level X consists of one up buffer uX that can store up to X 
elements, and at most X1/3 down buffers,  each containing between ½X2/3 and 2X2/3 
elements. Thus the maximum capacity of level X is 3X. The size of a down buffer at one 
level matches the size (up to a constant factor) of the up buffer one level down.
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The Invariants 

Invariant 1: 
At level X, elements are stored among the down buffers, that is, elements is dix have smaller keys 
than elements in di+1x, but the elements within dix are unordered.

The element with largest key in each down buffer is called a pivot element, and is used to mark the 
boundaries between the ranges of the keys of elements in down buffers.

Invariant 2:
At level X, the elements in the down buffers have smaller keys than the elements in the up buffer. 

Invariant 3:
The elements in the down buffers at level X have smaller keys than the elements in 
the down buffers at the next higher level X3/2.

The invariants ensure that the keys of the elements 
in the down buffers get larger as we go from smaller 
to larger levels in the structure. At one level, keys of 
elements in the up buffer are larger than the keys in 

the down buffers. The keys of elements in an up 
buffer are unordered relative to the keys of the 

elements in the down buffer one level up. 
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Transferring Elements (in general) 

Up buffers store elements that are “on their way up” – they have yet to be resolved as 
belonging to a particular down buffer in the next level.
Down buffers store elements that are “on their way down” – they have yet to be resolved as 
belonging to a particular down buffer in the next level down. The element with overall 
smallest key is in the first down buffer at level c. 
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Priority Queue - Layout 

The priority queue is stored in a linear array. The levels are stored consecutively from 
smallest to largest. Each level occupies 3 times its size, starting with the up buffer 
(occupying one time its size) followed by the down buffers (occupying two times its size).
The total size of the array is O(N).
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Operations on Priority Queues 

We use two general operations – push and pull. Push inserts X elements into level 
X3/2, and pull removes the X elements with smallest keys from level X3/2, returning 
them in sorted order. 
Deletemin (insert) corresponds to pulling (pushing) an element from (to) the smallest level. 

Whenever an up buffer in level X overflows, we push the X elements in the 
buffer one level up, and whenever the down buffers in level X become too 
empty, we pull X elements from one level up.
Both the push and the pull operations maintain the three invariants.

Level X3/2

Level X
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To insert X elements into level X3/2, we first sort 
them using O(1+(X/B)log(M/B)(X/B)) memory 
transfers and O(Xlog2X) time. Next we distribute 
them into the X1/2 down buffers of level X3/2. We 
append an element to the end of the current down 
buffer, and advance to the next down buffer as 
soon as we encounter an element with larger key 
than the key of the pivot of the current down 
buffer.

Push operation: 

..........
Level X3/2

Level X

Elements with keys larger than the keys of 
the pivot of the last down buffer are 
inserted in the up buffer.

..........
Level X3/2

Level X

Scanning through the elements takes O(1+X/B) memory transfers and O(X) time. We 
perform one memory transfer for each of the X1/2 down buffers (in the worst case), so the 
total cost of distributing the elements is O(X/B+X1/2) memory transfers and O(X+X1/2) = 
O(X) time. 
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Push - The Elements Distribution 

If a down buffer runs full (contains 2X elements), we 

split the buffer into two down buffers each containing 

X elements, by finding the median of the elements in 

O(1+X/B) memory transfers and O(X) time and 

partitioning them in a simple scan in O(X) memory 

transfers. We assume that the down buffer can be 

stored out of order, so we just have to update the linked 

list of buffers. 

..........
Level X3/2

Level X

If the level has already the maximum of X1/2 down buffers 

before the split, we remove the last down buffer by 

inserting its elements into the up buffer. 

..........
Level X3/2

Level X

If the up buffer runs full (contains more than X3/2 

elements), then all of these elements are pushed into 

the next level up.

........Level X3/2

Level X
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Pull - Demonstration 
..........

Level X3/2

Level X

To delete X elements from level X3/2, we first assume that the 
down buffers at level X3/2 contain at least 3/2*X elements 
each, so the first three down buffers contain between 3/2*X 
and 6X elements. We find and remove the X smallest 
elements by sorting them using O(1+(X/B)log(M/B)(X/B)) 
memory transfers and O(Xlog2X) time. 

If the down buffers contain less than 3/2*X elements, 

we first pull the X3/2 elements with smallest keys from 

one level up.
........Level X3/2

Level X
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Because these elements do not necessarily 
have smaller keys than the U elements in the 
up buffer, we first sort the up buffer, and then 
we insert the U elements with the largest keys 
to the up buffer and distribute the remaining 
elements in the down buffers.

........Level X3/2

Level X

Afterwards, we can find the X elements with smallest keys as described earlier and remove 
them. The total cost of a pull of X elements from level X3/2 down to level X is O(1+(X/
B)log(M/B)(X/B)) memory transfers and O(Xlog2X) time amortized, not counting the cost of 
any recursive push operations, while maintaining invariants 1-3.

Pull(Demonstration)
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The delete-min is done by performing a pull on the smallest level. This may require 
recursive pushes (pulls) on higher levels. To maintain that the structure uses Θ(N) space, 
and has Θ(log logN) levels,

Pull/push(Total_Cost)

lemma :   following the previous results, push or pull of X elements to level X use O(X1/2+(X/
B)log(M/B)(X/B)) memory transfers. We can reduce this cost to O((X/B)log(M/B)(X/B)) by 
examining the cost for differently sized levels.
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In this problem we have a linked list with V nodes, stored as an unordered sequence, 
each containing the position of the next node in the list (an edge). Each edge has a 
weight and the goal is to find for each node v the sum of the weights of edges from v to 
the end of the list. 
For example, if all the weights are 1, then the goal is to determine the number of edges 
from v to the end of the list (called the rank of v). 

List Ranking – Main Idea 
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List Ranking - Explanation 
The list ranking algorithm in details:

Step 1:
Finding an independent set. This step is done cache-obliviously in O(sort(V)) memory transfers.

Step 2:
Taking out the independent set nodes by contracting edges incident to these nodes. We first identify a node u with a 
successor v in the independent set, by sorting the nodes by their successor position.
We also identify the successor w of the independent set node v.

Next we create in a simple scan a new list where the two edges (u,v) and (v,w) have been replaced 

with an edge (u,w). The new edge has weight equals to the sum of the two old edges. 

We remove the independent set nodes and store the remaining nodes in a new list. We also create a 

list that indicates the old position of every node. Finally, we “compress” the remaining nodes. 
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Step 3:
 Ranking the remaining list.
Step 4:
Repeating steps 1-3 recursively 

Step 5:
Finally, the independent set nodes are reintegrated into the list, while computing their ranks.

List Ranking - Explanation 

how to find the independent set cache-obliviously. The algorithm is based on 3-coloring – 
every node is colored with one of three colors such that adjacent nodes have different 
colors. The independent set (of size at least V/3) then consists of the nodes with the most 
popular color…
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Computing 3-Coloring 

An edge (v,w) is called a forward edge if v appears before w in the sequence of nodes, otherwise 
it is called a backward edge. First the list is split into two sets – one consists of forward lists and 
one consists of backward lists. Every node is included in at least one set, when a node which is 
the head or the tail of a list may be included in both of the sets. 

The nodes in the forward lists are colored red or blue alternatively (the heads are red), and the 

nodes in the backward lists are colored green or blue alternatively (the heads are green). 

This way every node is colored in one color, except for the heads / tails, which have two colors.
If the heads / tails of the lists were colored red and green or red and blue, they are colored red 
only. If they were colored blue and green, they are colored green only.
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In a single scan the head nodes are identified, and for each such node v a red element is 

inserted in a cache-oblivious priority-queue with key equal to the position of v in the 

unordered list. Then the minimal key element e is repeatedly extracted from the queue. 

3-Coloring and Priority Queue 

The successors of v are inserted in the queue. The inserted elements is colored the opposite 

color of e…etc

After finishing scanning and coloring all the forward lists, the backward lists are scanned 

and colored the same way. 
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3-Coloring – Demonstration 
Starting the coloring: 

  The head of a forward list is colored red.
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  Coloring the forward list in red and blue, alternatively.

The head of a backward list is colored green. 

3-Coloring – Demonstration 
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Coloring the backward list in green and 
blue, alternatively.

Coloring the backward list in green and 
blue, alternatively.

3-Coloring – Demonstration 
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The head of a forward list is colored red. 

Coloring the forward list in red and blue, alternatively. 

3-Coloring – Demonstration 
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  If the head / tail of a list was colored red and green or 
red and blue, it is colored red only. If it was colored 
blue and green, it is colored green only.

3-Coloring – Demonstration 
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Now the whole list is 3-colored, and so 
the next two lists are identically 
colored.

3-Coloring – Demonstration 
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Finding the independent set can be done in O(sort(V)) memory transfers. 
The rest of the steps can be done in O(sort(V)) as well. Therefore, the 
list ranking problem on a V node list can be solved cache-obliviously in 
O(sort(V)) memory transfers.

List Ranking - Complexity 
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results recap
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Developing an optimal cache-
oblivious data structures to 
get the best of memory 
hierarchy

VS
Example: Cache-Oblivious Priority 

Queue and Graph Algorithm 
Applications 

manipulating the hierarchy 
characteristics to get the best 
performance out of 
programs

Example: Semantic Locality

Introduction: Semantic Locality
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Introduction: Semantic Locality
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Main Memory

data transfer in 

lines

Spatial Locality
Temporal Locality

Constraints:
• Memory cache speed vs main memory speed.
• Cache capacity is limited (LRU strategy).
 

Hits vs  misses

store &a 
store &b 
store &c 
store &d 
load  &a 
load  &b 
load  &c 
load  &d 
load  &c 
load  &a 
load  &d

Program

Execution
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Goal: Semantic Locality
How can we influence execution speed just by changing the addresses used by a 
program? 
Can recycling addresses improve execution time?

store &a
store &b
store &c
store &d
load &a
load &b
load &c
load &d
load &c
load &a
load &d
store &e
load &e 

a b c d e

store &a
store &b
store &c
store &d
load &a
load &b
load &c
load &d
load &c
load &a
load &d
store &e
load &e 

b c d ea
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Semantic Locality: Implementation

Trace 
generator

Trace T SSA Trace
trace 

transformation

cache SMT solver

Results

Configurable in :
• Frequency of stores/loads
• frequency of data
• length of trace

cache simulation

Allocation phase simulation phase

Configurable in :
• Cache size
• Line size
• Strategy



Questions?
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