
1/19

Fast Computation by Population Protocols With
A Leader

Dana Angluin, James Aspnes, David Eisenstat

presented by: Hugo Platzer

Jan 13 2020



2/19

Introduction

I There are a number of different formal models of computation:
Turing machines, register machines, lambda calculus etc.

I Population Protocols are another such model of computation

I Lots of agents with limited local state and no information
about the global state (e.g., molecules in solution, sensors on
vehicles etc.)

I Agents interact randomly without a central authority

I By carefully tuning the way agents interact, they can be made
to compute some useful global property



3/19

Contents

I Population Protocols (in general)

I Population Protocols (for computation)

I Building blocks of the Population Protocol computer

I Operations of the Population Protocol computer

I Possible optimizations, outlook, applications



4/19

Population Protocols

I Set of agents {A1...An}, not ordered (numbering used to
facilitate description of model)

I Finite set of states {Q1...Qk}: Each agent is in one of these
states at a time

I Number of states is a property of the protocol, not the input
size ⇒ The number of states must not depend on n

I Total agent state: Multiset of elements of Q

I Transition function (a, b) 7→ (a′, b′), takes an ordered pair of
states (can be thought of as initiator and responder) and gives
new states for both agents



5/19

Population Protocols

I Interaction: Pick two distinct agents (Ai ,Aj) of Q, apply the
transition function to update their states

I Execution: infinite sequence of agent pairs (Ai ,Aj), specifying
which two agents transition in this interaction

I Fairness: originally an adversary that guarantees: if some
agent configuration occurs infinitely often, then any
configuration reachable also occurs infinitely often during the
execution

I but in this paper: focus on random uniform pick of pairs (i , j)

I Convergence: After a certain number of execution steps, all
agents will remain in one of the final states forever

I Initialization of states: can be uniform (if doing leader
election), or based on input (when computing predicates)



6/19

Population Protocols by example: Leader election

I Two states: 1 (leader), 0 (follower)

I All agents start in state 1

I Transition: (1, 1) 7→ (1, 0)

I Example (red: initiator, blue: responder):
[1, 1, 1, 1, 1]
[1, 1, 0, 1, 1]
[1, 1, 0, 1, 1]
[1, 1, 0, 0, 1]
[1, 1, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 0]

I This protocol takes an expected n2 interactions to converge



7/19

Computation with Population Protocols

I Agents A1..An

I Integer registers R1..Rm, each agent stores one bit of each
register in unary

I Value of register Rk :
∑n

i=1 Ai [k] (remember agents are not
ordered)

I Therefore, for a population size of n, each register can store a
number from 0 to n.

I State of agent: One bit for each register, plus additional
information about the current instruction being executed,
remember the number of states is not dependent on n

I Designated leader agent: Tells other agents which instruction
to execute, when to move from one instruction to the next

I Program: List of instructions that operate on registers
(addition, comparison, zero test) plus control flow instructions
(conditions, loops)



8/19

Building block: Epidemics

I Simplest building block of Population Protocol algorithms

I Used to spread a small piece of information (register bit,
current instruction)

I Leader starts epidemics to tell all agents to execute next
instruction

I States: 0 (susceptible), 1 (infected)

I Initialization: all agents start in 0 state, except for leader

I Transition: (1, 0) 7→ (1, 1)

I Convergence (all agents infected) w.h.p. guaranteed in
O(n log n) interactions



9/19

Building block: Phase clock

I Any instruction needs a certain number of interactions to
complete w.h.p. (typically Θ(n log n))

I Leader needs to broadcast signal to start next instruction at
the right time

I Problem: leader has no knowledge of other interactions, finite
state

I Solution: use duration of an epidemic to get a sense of time

I reduce variance by giving the epidemic m different stages,
tunable parameter, larger m means longer clock cycle (m too
big does not hurt)

I States 0...m − 1, leader starts in state 0, all others in state
m − 1



10/19

Building block: Phase clock

I Transition:
(a, b) 7→ (a, b + 1 mod m) responder is leader, a = b
(a, b) 7→ (a, b) responder is leader, a 6= b

(a, b) 7→ (a, a)
responder is not leader,
a ∈ [b + 1..b + m

2 ] mod m

(a, b) 7→ (a, b)
responder is not leader,
a /∈ [b + 1..b + m

2 ] mod m

I phase: leader receives its own stage, goes to next stage

I round: leader returns to stage 0 (m phases)

I For any d1 and c , there is a parameter m and a constant d2
so that the phase clock completes nc rounds each taking
between d1 ln n and d2 ln n interactions with probability at
least 1− n−c .



11/19

Building block: Duplication

I used to add two registers A,B

I States: (0, 0), (0, 1), (1, 1) (two register bits)

I Register state (1, 0) is converted to (0, 1) beforehand

I Transition:
((1, 1), (0, 0)) 7→ ((0, 1), (0, 1))
((0, 0), (1, 1)) 7→ ((0, 1), (0, 1))

I 1s from first register are moved to second register

I invariant: preserves A + B after every step

I if A + B ≤ n, eventually all 1s from A will have been moved
to B

I Convergence w.h.p. can take Θ(n2) interactions

I Convergence w.h.p. in O(n log n) interactions guaranteed if
2A + B ≤ n

2

I Test for success: A = 0?



12/19

Building block: Cancellation

I used to compare two registers A,B

I States: (0, 0), (0, 1), (1, 0) (two register bits)

I Register state (1, 1) is converted to (0, 0) beforehand

I Transition:
((1, 0), (0, 1)) 7→ ((0, 0), (0, 0))
((0, 1), (1, 0)) 7→ ((0, 0), (0, 0))

I invariant: preserves A− B after every step

I if A > B, eventually A will have A− B 1s, B will have all 0s

I if B > A, eventually B will have B − A 1s, A will have all 0s

I if A = B, eventually A = B = 0

I Convergence w.h.p. can take Θ(n2) interactions

I After O(n log n) interactions, w.h.p. the number of (0, 1)
states is at most n

8 , same for the number of (1, 0) states

I Test for success: A = 0 ∨ B = 0?



13/19

Building block: Probing

I Test whether there is any agent that satisfies some predicate
(typically: is some register bit 1?)

I States: 0, 1, 2 (in addition to other information at agent)

I Initialization: leader in state 1 (if not satisfied), 2 (if satisfied)
, all other agents in state 0

I Transition:

(x , y) 7→ (x ,max(x , y)) responder not satisfied
(0, y) 7→ (0, y) responder satisfied
(1, y) 7→ (1, 2) responder satisfied
(2, y) 7→ (2, 2) responder satisfied

I if there is an agent satisfying the predicate, eventually all
agents will be (and stay) in state 2

I otherwise, eventually all agents will be (and stay) in state 1

I Leader checks its state to get result

I Convergence w.h.p. in O(n log n) interactions



14/19

Microcode instructions

I

I run all operations for Θ(n log n) interactions, the constant
needs to be tuned (large enough) of course



15/19

High-level operations

I

I These basic operations take a constant number of microcode
operations, therefore O(n log n) interactions



16/19

Operation: Comparison

I
I Requires O(log(n)) instructions, returns correct result w.h.p.



17/19

Operation: Subtraction

I

I Requires O(log3(n)) instructions, returns correct result w.h.p.



18/19

Other operations

I Division
I Shift divisor to the left as long as its not larger than dividend

(log2 n instructions)
I Subtract from dividend (log3 n instructions)
I Repeat for all log(n) bits of dividend
I Also keep track of quotient (shift from 1 to the left, add to

total)
I Θ(log4 n) instructions

I Extract individual bits
I Extract bit: Divide by 2 until desired bit is least significant

(log n divisions)
I Test for even / odd by dividing by 2, multiplying by 2,

comparing
I Set bit: Test bit, if not already correct: Shift 1 to the left to

match up with bit, add / subtract to change bit
I Θ(log5 n) instructions



19/19

Outlook

I Optimize subtraction by balanced representation
I Balanced representation: Each register consists of a positive

and a negative part: A = A+ − A−

I Addition: add positive to positive, negative to negative
I Subtraction: add positive to negative, negative to positive
I Use cancellation to keep parts from growing too big
I Faster subtraction also means faster division

I Faster simulation of LOGSPACE turing machines

I Faster evaluation of semilinear predicates using random-walk
broadcast

I Obtain a single leader in O(n logk n) interactions

I Fault tolerance, non-uniform distribution of interactions


