Fast Computation by Population Protocols With A Leader

Dana Angluin, James Aspnes, David Eisenstat

presented by: Hugo Platzer

Jan 13 2020

Introduction

- There are a number of different formal models of computation: Turing machines, register machines, lambda calculus etc.
- Population Protocols are another such model of computation
- Lots of agents with limited local state and no information about the global state (e.g., molecules in solution, sensors on vehicles etc.)
- Agents interact randomly without a central authority
- By carefully tuning the way agents interact, they can be made to compute some useful global property

Contents

- Population Protocols (in general)
- Population Protocols (for computation)
- Building blocks of the Population Protocol computer
- Operations of the Population Protocol computer
- Possible optimizations, outlook, applications

Population Protocols

- Set of agents {A₁...A_n}, not ordered (numbering used to facilitate description of model)
- ▶ Finite set of states {Q₁...Q_k}: Each agent is in one of these states at a time
- Number of states is a property of the protocol, not the input size ⇒ The number of states must not depend on n
- Total agent state: Multiset of elements of Q
- ► Transition function (a, b) → (a', b'), takes an ordered pair of states (can be thought of as initiator and responder) and gives new states for both agents

Population Protocols

- Interaction: Pick two distinct agents (A_i, A_j) of Q, apply the transition function to update their states
- Execution: infinite sequence of agent pairs (A_i, A_j), specifying which two agents transition in this interaction
- Fairness: originally an adversary that guarantees: if some agent configuration occurs infinitely often, then any configuration reachable also occurs infinitely often during the execution
- but in this paper: focus on random uniform pick of pairs (i, j)
- Convergence: After a certain number of execution steps, all agents will remain in one of the final states forever
- Initialization of states: can be uniform (if doing leader election), or based on input (when computing predicates)

Population Protocols by example: Leader election

- Two states: 1 (leader), 0 (follower)
- All agents start in state 1
- Transition: $(1,1) \mapsto (1,0)$
- Example (red: initiator, blue: responder):
 - $\begin{bmatrix} 1, 1, 1, 1, 1 \\ [1, 1, 0, 1, 1] \\ [1, 1, 0, 1, 1] \\ [1, 1, 0, 0, 1] \\ [1, 1, 0, 0, 1] \\ [1, 0, 0, 0, 1] \\ [1, 0, 0, 0, 0] \end{bmatrix}$
- This protocol takes an expected n^2 interactions to converge

Computation with Population Protocols

- Agents $A_1..A_n$
- Integer registers R₁..R_m, each agent stores one bit of each register in unary
- Value of register R_k: ∑ⁿ_{i=1} A_i[k] (remember agents are not ordered)
- Therefore, for a population size of n, each register can store a number from 0 to n.
- State of agent: One bit for each register, plus additional information about the current instruction being executed, remember the number of states is **not dependent on n**
- Designated leader agent: Tells other agents which instruction to execute, when to move from one instruction to the next
- Program: List of instructions that operate on registers (addition, comparison, zero test) plus control flow instructions (conditions, loops)

Building block: Epidemics

- Simplest building block of Population Protocol algorithms
- Used to spread a small piece of information (register bit, current instruction)
- Leader starts epidemics to tell all agents to execute next instruction
- States: 0 (susceptible), 1 (infected)
- Initialization: all agents start in 0 state, except for leader
- Transition: $(1,0) \mapsto (1,1)$
- Convergence (all agents infected) w.h.p. guaranteed in O(n log n) interactions

Building block: Phase clock

- Any instruction needs a certain number of interactions to complete w.h.p. (typically Θ(n log n))
- Leader needs to broadcast signal to start next instruction at the right time
- Problem: leader has no knowledge of other interactions, finite state
- Solution: use duration of an epidemic to get a sense of time
- reduce variance by giving the epidemic *m* different stages, tunable parameter, larger *m* means longer clock cycle (*m* too big does not hurt)
- States 0...m 1, leader starts in state 0, all others in state m 1

Building block: Phase clock

- Transition: $(a, b) \mapsto (a, b+1 \mod m)$ $(a, b) \mapsto (a, b)$ $(a, b) \mapsto (a, a)$ $(a, b) \mapsto (a, b)$ $(a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b)$ $(a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b)$ Transition: $(a, b) \mapsto (a, b) \mapsto (a,$
- phase: leader receives its own stage, goes to next stage
- round: leader returns to stage 0 (m phases)
- For any d₁ and c, there is a parameter m and a constant d₂ so that the phase clock completes n^c rounds each taking between d₁ ln n and d₂ ln n interactions with probability at least 1 − n^{-c}.

Building block: Duplication

- used to add two registers A, B
- ▶ States: (0,0), (0,1), (1,1) (two register bits)
- Register state (1,0) is converted to (0,1) beforehand
- ► Transition: $\begin{array}{l} ((1,1),(0,0)) \mapsto ((0,1),(0,1)) \\ ((0,0),(1,1)) \mapsto ((0,1),(0,1)) \end{array}$
- ▶ 1s from first register are moved to second register
- invariant: preserves A + B after every step
- ▶ if A + B ≤ n, eventually all 1s from A will have been moved to B
- Convergence w.h.p. can take $\Theta(n^2)$ interactions
- ► Convergence w.h.p. in $O(n \log n)$ interactions guaranteed if $2A + B \le \frac{n}{2}$
- Test for success: A = 0?

Building block: Cancellation

- used to compare two registers A, B
- States: (0,0), (0,1), (1,0) (two register bits)
- Register state (1,1) is converted to (0,0) beforehand
- ► Transition: $\begin{array}{l} ((1,0),(0,1)) \mapsto ((0,0),(0,0)) \\ ((0,1),(1,0)) \mapsto ((0,0),(0,0)) \end{array}$
- ▶ invariant: preserves A − B after every step
- if A > B, eventually A will have A B 1s, B will have all 0s
- if B > A, eventually B will have B A 1s, A will have all 0s
- if A = B, eventually A = B = 0
- Convergence w.h.p. can take $\Theta(n^2)$ interactions
- ► After O(n log n) interactions, w.h.p. the number of (0, 1) states is at most ⁿ/₈, same for the number of (1,0) states
- Test for success: $A = 0 \lor B = 0$?

Building block: Probing

- Test whether there is any agent that satisfies some predicate (typically: is some register bit 1?)
- States: 0, 1, 2 (in addition to other information at agent)
- Initialization: leader in state 1 (if not satisfied), 2 (if satisfied), all other agents in state 0

• Transition: $\begin{array}{l} (x,y) \mapsto (x, max(x,y)) \text{ responder not satisfied} \\ (0,y) \mapsto (0,y) \text{ responder satisfied} \\ (1,y) \mapsto (1,2) \text{ responder satisfied} \\ (2,y) \mapsto (2,2) \text{ responder satisfied} \end{array}$

- if there is an agent satisfying the predicate, eventually all agents will be (and stay) in state 2
- otherwise, eventually all agents will be (and stay) in state 1
- Leader checks its state to get result
- ▶ Convergence w.h.p. in $O(n \log n)$ interactions

Microcode instructions

Instruction	Effect on state of agent <i>i</i>
NOOP	No effect.
SET(A)	$\operatorname{Set} A_i = 1.$
COPY(A,B)	Copy A_i to B_i
DUP(A,B)	Run duplication protocol on state (A_i, B_i) .
CANCEL (A, B)	Run cancellation protocol on state (A_i, B_i) .
PROBE(A)	Run probe protocol with predicate $A_i = 1$.

► run all operations for Θ(n log n) interactions, the constant needs to be tuned (large enough) of course

High-level operations

Operation	Effect	Implementation	Notes
Constant 0	$A \leftarrow 0$	$SET(\neg A)$	
Constant 1	$A \leftarrow 1$	$\frac{\text{SET}(\neg A)}{A_{\text{leader}} \leftarrow 1}$	
Assignment	$A \leftarrow B$	COPY(B,A)	
Addition	$A \leftarrow A + B$	$\begin{array}{c} \text{COPY}(B,X) \\ \text{DUP}(X,A) \\ \text{PROBE}(X) \end{array}$	May fail with $X \neq 0$ if $A + B > n/2$.
Multiplication	$A \leftarrow kB$	Use repeated addition.	k = O(1)
Zero test	$A \neq 0$?	PROBE(A)	

These basic operations take a constant number of microcode operations, therefore O(n log n) interactions

Operation: Comparison

Algorithm 1 Comparison algorithm COMPARE.

```
1: A' \leftarrow A.
 2: B' \leftarrow B.
 3: C \leftarrow 1.
 4: r \leftarrow 0
 5: while true do
                                        A' - B' preserved
       CANCEL(A', B').
 6:
 7:
       if A' = 0 and B' = 0 then
 8:
          return A = B.
                                        CANCEL successful
 9:
       else if A' = 0 then
                                        (eliminated one register)
10:
          return A < B.
11:
       else if B' = 0 then
12:
          return A > B.
13:
       end if
14:
    r \leftarrow 1 - r
                                        CANCEL failed.
       if r = 0 then
15:
                                        however A < n / 8, B < n / 8
16:
      C \leftarrow C + C
                                        repeat loop for
17:
          if addition failed then
                                        2 log2 n times
18:
             return A = B.
                                        if still no elimination, A = B
          end if
19:
20:
       end if
21:
      A' \leftarrow A' + A'
                                        A' - B' doubled
22:
       B' \leftarrow B' + B'.
23: end while
```

Requires O(log(n)) instructions, returns correct result w.h.p.

Operation: Subtraction

Algorithm 2 Subtraction algorithm SUBTRACT. 1: $A' \leftarrow A$ 2: $B' \leftarrow B$. 3: CANCEL(A', B'). 4: if B' = 0 then If this fails, A < n / 8, B < n / 85: $C \leftarrow A$. 6: return. 7: end if 8: $C \leftarrow 0$. build C (difference) using binary search 9: while $A' \neq B' + C$ do 10: $D \leftarrow 1$. 11: while $A' \ge B' + C + D + D$ do find most significant bit still missing in C 12: $D \leftarrow D + D$. 13: end while 14: $C \leftarrow C + D$. introduce this bit to C 15: end while

▶ Requires $O(\log^3(n))$ instructions, returns correct result w.h.p.

Other operations

Division

- Shift divisor to the left as long as its not larger than dividend (log² n instructions)
- Subtract from dividend (log³ n instructions)
- Repeat for all log(n) bits of dividend
- Also keep track of quotient (shift from 1 to the left, add to total)
- $\Theta(\log^4 n)$ instructions
- Extract individual bits
 - Extract bit: Divide by 2 until desired bit is least significant (log n divisions)
 - Test for even / odd by dividing by 2, multiplying by 2, comparing
 - Set bit: Test bit, if not already correct: Shift 1 to the left to match up with bit, add / subtract to change bit
 - $\Theta(\log^5 n)$ instructions

Outlook

Optimize subtraction by balanced representation

- Balanced representation: Each register consists of a positive and a negative part: A = A⁺ - A⁻
- Addition: add positive to positive, negative to negative
- Subtraction: add positive to negative, negative to positive
- Use cancellation to keep parts from growing too big
- Faster subtraction also means faster division
- Faster simulation of LOGSPACE turing machines
- Faster evaluation of semilinear predicates using random-walk broadcast
- Obtain a single leader in $\mathcal{O}(n \log^k n)$ interactions
- ▶ Fault tolerance, non-uniform distribution of interactions