Towards Optimal Dynamic Graph Compression

Sebastian Krinninger
Universitat Salzburg

Austrian Computer Science Day 2018

16

Graphs are Everywhere

Graphs are Everywhere

i I

16

are Everywhere

Graph Compression

e 1\

oS

I\

D

"?

Y
VAW
O

o
75
I—

\/

=z
SH

£\
S
A Q
P2
S

‘V
<&

2

\\‘

Graph Compression

16

e 1\

Graph Compression

SN
WAL VST
A]

NP

>N

16

Graph Compression

Goal: Semantic Compression

Graph Compression

K >

e 1\
SN,

Goal: Semantic Compression

Subgraph for algorithmic applications

Too Good to be True?

16

Too Good to be True?

“There ain’t no such thing as a free lunch.”

16

Too Good to be True?

“There ain’t no such thing as a free lunch.”

...except for ACSD 2018.

Too Good to be True?

“There ain’t no such thing as a free lunch.”

...except for ACSD 2018.
Thanks Christoph!

Lossy Compression

1\
SN

S

5|

o
TR ".ﬁh—"“ <

[7 .‘VA.',»‘ ' ¢
T\ ‘ NG N “‘
2y

Lossy Compression

Lossy Compression

1\

CAL VLD
DX P RAL K
2\

Lossy Compression

i
/NN

/]

N N
““b» %
[>

i‘?:::’l_’ﬂ‘é_
PO
RSN
@ 2
] >
"s (T
P
/2

=
S
!»

i ! '{‘ ” "y
K
5
0

I\
= A‘
Nl
L
COPA
i
7
A$'A
)\
o‘ﬁ

‘\\
\;4
%
N

2,

N\

Lossy Compression

b

a
A7
o

N

P
02 1/

>

2

ol
CNAT SRR
L XIS

N\ 9

S

a®

D

LD

77
~\N\~—

R
8%
y

b,
PR

A\

o
=N

—

I\

=z
2%

'S
WAL
<

5

N
42X

Cannot reconstruct original graph after compression
— Compression at cost of approximation

Lossy Compression

A
AR

v(//l
™
)
AT
(X
e
<]
LS
[77

AN

I
S
>
U
sz
A»
av.
8
s\

L pK

%
\
00 NNy
\‘\v‘/

[<
N\

\/

N
N
X
o

<

I\
=i
KT
s
S
s %
SEA
S
Y
)
P

‘\
2
\

':'»
Zwll
\‘

v
s

!/

Z,

I
I
Cannot reconstruct original graph after compression

— Compression at cost of approximation

When are two graphs approximately the same?
— Problem-specific measures

Our World is not Static

6/16

Our World is not Static

6/16

Our World is not Static

6/16

Our World is not Static

6/16

Our World is not Static

Goal: Fast recomputation of solution after each
insertion/deletion of an edge

6/16

Dynamic Graph Compression

Input graph G Algorithm Compressed graph H

Dynamic Graph Compression

Input graph G Algorithm

adversary inserts and
deletes edges

Compressed graph H

Dynamic Graph Compression

Input graph G

DS
WA
DA
Woavaw,

=\

N\

adversary inserts and
deletes edges

Algorithm

Compressed graph H

Dynamic Graph Compression

Input graph G

DS
WA
DA
Woavaw,
V2

adversary inserts and

deletes edges

Algorithm Compressed graph H

algorithm adds and
removes edges

Let’s take a look under the hood!

8/16

Example 1: Distance-Preserving Compression
Definition
A spanner of stretch t of G = (V, E) is a subgraph H = (V, E’) such that

distg(u,v) < distg(u,v) < t - distg(u,v)
for all pairs of nodes u,v € V.

16

Example 1: Distance-Preserving Compression
Definition
A spanner of stretch t of G = (V, E) is a subgraph H = (V, E’) such that

distg(u,v) < distg(u,v) < t - distg(u,v)
for all pairs of nodes u,v € V.

Example 1: Distance-Preserving Compression
Definition
A spanner of stretch t of G = (V, E) is a subgraph H = (V, E’) such that

distg(u,v) < distg(u,v) < t - distg(u,v)
for all pairs of nodes u,v € V.

Example 1: Distance-Preserving Compression
Definition
A spanner of stretch t of G = (V, E) is a subgraph H = (V, E’) such that

distg(u,v) < distg(u,v) < t - distg(u,v)
for all pairs of nodes u,v € V.

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*'/¥) edges.

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*'/¥) edges.

e k = 1: stretch 1, size O(n?)

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*'/¥) edges.

e k = 1: stretch 1, size O(n*) — input graph

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n*) — input graph
o k = 2: stretch 3, size O(n®/?)

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n*) — input graph
o k = 2: stretch 3, size O(n®/?)

o k = logn: stretch O(logn), size O(n)

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n?) — input graph
o k = 2: stretch 3, size O(n®/?)
o k = logn: stretch O(logn), size O(n)

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdés.

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n?) — input graph
o k = 2: stretch 3, size O(n®/?)
o k = logn: stretch O(logn), size O(n)

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdés. J

Isn’t this stretch guarantee very weak?

10/16

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n?) — input graph
o k = 2: stretch 3, size O(n®/?)
o k = logn: stretch O(logn), size O(n)

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdés.

Isn’t this stretch guarantee very weak?

In many applications: boosting approach for better approximation

10/16

Our Spanner Results

Theorem ([Baswana, Sarkar ’08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch
t=2k-1

o with O(n'*'/kk8log?® n) edges in amortized time O(7%/?) per update,
o with O(n'"*'/kklog n) edges in amortized time O(k* log® n) per update.

11/16

Our Spanner Results

Theorem ([Baswana, Sarkar ’08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch
t=2k-1

o with O(n'*'/kk8log?® n) edges in amortized time O(7%/?) per update,
o with O(n'"*'/kklog n) edges in amortized time O(k* log® n) per update.

Amortized time: Time bound holds on average over a sequence of updates

11/16

Our Spanner Results

Theorem ([Baswana, Sarkar ’08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch
t=2k-1

o with O(n'*'/kk8log?® n) edges in amortized time O(7%/?) per update,
o with O(n'"*'/kklog n) edges in amortized time O(k* log® n) per update.

Amortized time: Time bound holds on average over a sequence of updates
Worst-case time: Hard upper bound for each update

11/16

Our Spanner Results

Theorem ([Baswana, Sarkar ’08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch
t=2k-1

o with O(n'*'/kk8log?® n) edges in amortized time O(7%/?) per update,
o with O(n'"*'/kklog n) edges in amortized time O(k* log® n) per update.

Amortized time: Time bound holds on average over a sequence of updates
Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, Henzinger, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k — 1)-spanner with
O(n***k log” nloglog n) edges in worst-case time O(20%/? log® n) per update.

11/16

Our Spanner Results

Theorem ([Baswana, Sarkar ’08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch
t=2k-1

o with O(n'*'/kk® log? n) edges in amortized time O(7%/?) per update,

o with O(n'"*'/kklog n) edges in amortized time O(k* log® n) per update.

Amortized time: Time bound holds on average over a sequence of updates
Worst-case time: Hard upper bound for each update
Theorem ([Bernstein, Henzinger, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k — 1)-spanner with
O(n***k log” nloglog n) edges in worst-case time O(20%/? log® n) per update.

Theorem ([Goranci, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k — 1)-spanner with
O(n'*/* log n) edges in amortized time O(k log® n) per update.

11/16

More Succinct Compression

Question: How much compression is possible?

12/16

More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

12/16

More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

More Succinct Compression
Question: How much compression is possible?

Need to preserve connectivity: spanning tree is the limit

Number of edges: n — 1

More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

Number of edges: n — 1

Drawback: Cannot have “hard” stretch guarantee anymore, only average

More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

Number of edges: n — 1
Drawback: Cannot have “hard” stretch guarantee anymore, only average
Theorem ([Goranci, K submitted])

There is a dynamic algorithm that maintains a spanning tree of average stretch
t = n°V with amortized time O(n'/**°() per update.

12/16

More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

Number of edges: n — 1
Drawback: Cannot have “hard” stretch guarantee anymore, only average

Theorem ([Goranci, K submitted])

There is a dynamic algorithm that maintains a spanning tree of average stretch
t = n°V with amortized time O(n'/**°() per update.

Matches stretch of seminal static construction! [Alon/Karp/Peleg/West]

12/16

Example I1I: Cut-Preserving Compression

Definition ([Benczir/Karger ’00])

A (1 £ €)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V'\ O), the edges E[C,V \ C] crossing the cut have weight

(1-¢€) - wg(E[C,V\C]) < wg(E[C,V\C]) £ (1+¢€) wg(E[C,V\C])

13/16

Example I1I: Cut-Preserving Compression

Definition ([Benczir/Karger ’00])

A (1 £ €)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V'\ O), the edges E[C,V \ C] crossing the cut have weight

(1-¢€) - wg(E[C,V\C]) < wg(E[C,V\C]) £ (1+¢€) wg(E[C,V\C])

Example I1I: Cut-Preserving Compression

Definition ([Benczir/Karger ’00])

A (1 £ €)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V'\ O), the edges E[C,V \ C] crossing the cut have weight

(1-¢€) - wg(E[C,V\C]) < wg(E[C,V\C]) £ (1+¢€) wg(E[C,V\C])

Example I1I: Cut-Preserving Compression

Definition ([Benczir/Karger ’00])

A (1 £ €)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V'\ O), the edges E[C,V \ C] crossing the cut have weight

(1-¢€) - wg(E[C,V\C]) < wg(E[C,V\C]) £ (1+¢€) wg(E[C,V\C])

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])
Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne™?) edges. J

14/16

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne™?) edges. J

Deep Connection to solving SDD linear systems! [Spielman/Teng *04]

14/16

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])
Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne™?) edges. J

Deep Connection to solving SDD linear systems! [Spielman/Teng *04]

Theorem (Abraham, Durfee, Koutis, K, Peng ’16)

There is a dynamic algorithm for maintaining a spectral sparsifier with
O(ne~?log n) edges in worst-case time O(e 2 log’ n) per update.

14/16

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne™?) edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng *04]

Theorem (Abraham, Durfee, Koutis, K, Peng ’16)

There is a dynamic algorithm for maintaining a spectral sparsifier with
O(ne~?log n) edges in worst-case time O(e 2 log’ n) per update.

First dynamic algorithm for this problem

14/16

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne™?) edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng *04]

Theorem (Abraham, Durfee, Koutis, K, Peng ’16)

There is a dynamic algorithm for maintaining a spectral sparsifier with
O(ne~?log n) edges in worst-case time O(e 2 log’ n) per update.

First dynamic algorithm for this problem

Internally uses dynamic spanner with stretch O(logn)

14/16

Conclusion

Graph compression

@ Mathematically clean framework

15/16

Conclusion

Graph compression
@ Mathematically clean framework

@ Powerful tool in modern algorithm design

15/16

Conclusion

Graph compression
@ Mathematically clean framework

@ Powerful tool in modern algorithm design

My goals:
@ Rebuild graph compression results in the dynamic world

e Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

15/16

Conclusion

Graph compression
@ Mathematically clean framework

@ Powerful tool in modern algorithm design

My goals:
@ Rebuild graph compression results in the dynamic world

e Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Thank you!

15/16

Closing Words

16/16

