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Goal: Semantic Compression

Subgraph for algorithmic applications
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Too Good to be True?

“There ain’t no such thing as a free lunch.”

...except for ACSD 2018.
Thanks Christoph!
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Cannot reconstruct original graph after compression
— Compression at cost of approximation



Lossy Compression

A
AR

v(//l
™
)
AT
(X
e
<]
LS
[77

AN

I
S
>
U
sz
A»
av.
8
s\

L pK

%
\
00 NNy
\‘\v‘/

[ <
N\

\/

N
N
X
o

<

I\
=i
KT
s
S
s %
SEA
S
Y
)
P

‘\
2
\

':'»
Zwll
\‘

v
s

!/

Z,

I
I
Cannot reconstruct original graph after compression

— Compression at cost of approximation

When are two graphs approximately the same?
— Problem-specific measures



Our World is not Static

6/16



Our World is not Static

6/16



Our World is not Static

6/16



Our World is not Static

6/16



Our World is not Static

Goal: Fast recomputation of solution after each
insertion/deletion of an edge
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Algorithm Compressed graph H

algorithm adds and
removes edges



Let’s take a look under the hood!
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Example 1: Distance-Preserving Compression
Definition
A spanner of stretch t of G = (V, E) is a subgraph H = (V, E’) such that

distg(u,v) < distg(u,v) < t - distg(u,v)
for all pairs of nodes u,v € V.
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For every integer k, every graph with n nodes admits a spanner of stretch
t = 2k — 1 with O(n'*/%) edges.

e k = 1: stretch 1, size O(n?) — input graph
o k = 2: stretch 3, size O(n®/?)
o k = logn: stretch O(logn), size O(n)

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdés.

Isn’t this stretch guarantee very weak?

In many applications: boosting approach for better approximation
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Our Spanner Results

Theorem ([Baswana, Sarkar ’08])
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More Succinct Compression

Question: How much compression is possible?
Need to preserve connectivity: spanning tree is the limit

Number of edges: n — 1
Drawback: Cannot have “hard” stretch guarantee anymore, only average

Theorem ([Goranci, K submitted])

There is a dynamic algorithm that maintains a spanning tree of average stretch
t = n°V with amortized time O(n'/**°() per update.

Matches stretch of seminal static construction! [Alon/Karp/Peleg/West]
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Example I1I: Cut-Preserving Compression

Definition ([Benczir/Karger ’00])

A (1 £ €)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V'\ O), the edges E[C,V \ C] crossing the cut have weight

(1-¢€) - wg(E[C,V\C]) < wg(E[C,V\C]) £ (1+¢€) wg(E[C,V\C])
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Theorem (Abraham, Durfee, Koutis, K, Peng ’16)

There is a dynamic algorithm for maintaining a spectral sparsifier with
O(ne~?log n) edges in worst-case time O(e 2 log’ n) per update.

First dynamic algorithm for this problem

Internally uses dynamic spanner with stretch O(logn)
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Conclusion

Graph compression
@ Mathematically clean framework

@ Powerful tool in modern algorithm design

My goals:
@ Rebuild graph compression results in the dynamic world

e Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Thank you!
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