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Context

Goal: Compute shortest paths from a source node s to all other nodes

How can this be an open problem??

(Nearly) optimal solutions known in RAM model

Not fully understood in CONGEST model

Not fully understood in PRAM model

To be fair: non-negative weights also not fully understood in RAM model
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CONGEST Model
Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
Processors with unique IDs modeled as nodes
Synchronous rounds (global clock)
In each round, every node sends (at most) one message to each neighbor
Message size O (logn)
Unlimited internal computation between rounds
Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions
Weights represent costs (not time)
This talk: integer edge weights bounded by nO (1)

Distributed problem statement:
Initial knowledge: incident edges, source
Terminal knowledge: distance to the source, parent on shortest path tree
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Unweighted Graphs: BFS

s

Breadth-first search tree can be computed in O (D) rounds.

Our goal: e�icient algorithms for weighted graphs
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Known Results
Exact SSSP:
O (n) Bellman-Ford
Õ (n2/3D1/3 + n5/6) [Elkin ’17]

Õ (n3/4D1/4) [Gha�ari/Li ’18]
Õ (n3/4+o (1) +min{n3/4D1/6,n6/7} + D) [Gha�ari/Li ’18]
Õ (
√
nD) [F/Nanongkai]

Õ (
√
nD1/4 + n3/5 + D) [F/Nanongkai]

(1 + ϵ )-approximate SSSP:
Õ ((
√
nD1/4 + D)/ϵO (1) ) [Nanongkai ’14]

Õ ((
√
n + D)no (1) ) 1 [Henzinger/K/Nanongkai ’16]

Õ ((
√
n + D)/ϵO (1) ) [Becker/Karrenbauer/K/Lenzen ’17]

Common Lower Bound:
Ω̃(
√
n + D) [Peleg/Rubinovich ’99]

[Elkin ’04]
[Das Sarma et al. ’11]

1ϵ ≥ 1/ logO (1) n
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Õ ((
√
n + D)no (1) ) 1 [Henzinger/K/Nanongkai ’16]
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Õ (
√
nD) [F/Nanongkai]
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More Related Work

Approximation Algorithms:
[Lenzen/Pa�-Shamir ’13]

[Lenzen/Pa�-Shamir ’15]

All-Pairs Shortest Paths and k-Source Shortest Paths:
[Holzer/Wa�enhofer ’12]

[Elkin/Neiman ’16]

[Huang/Nanongkai/Saranurak ’17]

[Agarwal/Ramachandran/King/Pontecorvi ’18]

[Agarwal/Ramachandran ’18]

Congested Clique:
[Censor-Hillel et al. ’15]

[Holzer/Pinsker ’15]
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Broadcasting

Lemma
Suppose k pieces of information (of size O (logn) each)
are distributed among the nodes of the network. All this
information can be made known to all nodes in
O (k + D) rounds.

Need to respect bounded message size!

Algorithm:
1 Compute BFS tree (from arbitrary root)

Time: O (D)

2 Aggregate information at root bo�om up
�eue of outgoing messages at each node

Time: O (k + D)

3 Distribute information from root top down
Send one piece at a time

Time: O (k + D)

“Pipelining”
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Bellman-Ford
Algorithm:

1 Initialize δ0 (s ) = 0 and δ (v ) , for v , s
2 In round i , set δi (v ) = min(u,v )∈E (δi−1 (u) +w (u,v ))

Lemma
Can compute shortest paths from given source in O (n) rounds

Fine-grained analysis: A�er h rounds, algorithm has computed shortest
h-hop paths (shortest among all paths with a “budget” of h edges)

Lemma
Can compute h-hop shortest paths from given source in O (h) rounds

Intuition
SSSP is easy if shortest path has only few edges (hops)!
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Hopsets
Definition ([Cohen ’00])
An (h, ϵ )-hopset is a set of weighted edges F such that, for every pair of
nodes u and v , there is a path from u to v with at most h edges of weight at
most (1 + ϵ ) distG (u,v ) in G ∪ F .

Observation
Given (h, ϵ )-hopset, h-hop shortest paths provide (1 + ϵ )-approximation

A�ention: Hopset edges cannot literally be “added” to network!
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Skeleton Graph
Randomized skeleton H :

1 Sample Õ (n/h) skeleton nodes uniformly at random (+ source s)
2 Set wH (x ,y) = disthG (x ,y) (h-hop distance)

Lemma ([Klein/Subramanian ’97])

Skeleton is an exact (Õ (n/h + h), 0)-hopset with high probability.

Lemma ([Ullman/Yannakakis ’90])
Every shortest path with h/2 edges contains skeleton with high probability.

Proof of hopset property:

s v
h/2 edges h/2 edges h/2 edges < h/2 edges

< h edges
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Skeleton Shortcuts
1 Suppose we could compute SSSP on skeleton H
2 Shortcut edges F from s to skeleton nodes: wF (s,x ) = distH (s,x )

Observation
Shortcuts F are an exact source-wise (h, 0)-hopset with high probability.

Recall proof:

s v
h/2 edges h/2 edges h/2 edges < h/2 edges

< h edges

Good news:
Cannot literally “add” shortcuts to network, but can run Bellman-Ford
on G ∪ F

Only first iteration uses shortcut edges of F
If each skeleton node knows shortcut to s , simulate first iteration in
O (D) rounds

→ O (h + D) rounds
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A First Idea

Algorithm 1:
1 Determine skeleton nodes: random sample of Õ (n/h) nodes + s

(repeat sampling if too large)

Time: O (D)

2 Compute h-hop distances from all skeleton nodes
(such that disthG (x ,v ) is known to v)

Time: Õ (h · n/h) = Õ (n) (sequential)

3 Make skeleton known to every node

Time: O (n2/h2 + D)

4 Determine set of shortcut edges F
(Internally compute SSSP on skeleton H for every node)

Time: 0

5 Compute h-hop distances from s in G ∪ F
(h Bellman-Ford iterations)

Time: O (h)
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Multiple Bounded-Hop Distances

Goal: Run Õ (n/h) instances of Bellman-Ford (h iterations) “in parallel”

Obstacle:
In each instance, every node sends to all its neighbors

One iteration in all instances: up to Õ (n/h) messages over each edge

Bandwidth only allows one message

Could simulate sending of Õ (n/h) messages in Õ (n/h) rounds

Alternative to Bellman-Ford: “Weighted BFS”
Replace each weighted edge e by path of w (e ) unweighted edges

Replacement can be simulated in BFS computation

Can compute shortest paths of weight ≤ L in time O (L)

Bandwidth-friendly: at most one message per node

Pseudopolynomial: h-hop shortest paths in time O (hWmax)
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Approximate Bounded-Hop Distances

Weight rounding technique: [Klein/Subramanian ’97]
Round up weights to multiples of φ

Scale down rounded weights to integers

Speed-up: shortest paths of weight ≤ L in time O (L/φ)

But: Each edge traversal gives additive error of φ

Choice of φi = ϵ2i/h deals with range 2i ≤ disth (s,v ) ≤ 2i+1

Lemma ([Nanongkai ’14])
Can compute (1 + ϵ )-approximate h-hop shortest paths from given source in
Õ (h/ϵ ) rounds such that each node sends Õ (1/ϵ ) messages

18 / 36
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Multiple Approximate Bounded-Hop Distances

E�icient parallelization: Random start delays [Leighton/Maggs/Rao ’94]

For each skeleton node: random integer delay from 0 to Õ (n/h)

Results in O (logn) simultaneous messages over each edge whp

Simulate each such round by O (logn) rounds

Lemma ([Nanongkai ’14])

Can compute (1 + ϵ )-approximate skeleton of Õ (n/h) nodes in time
Õ (h/ϵ + n/h)

Remarks:
Alternative: Weight rounding + source detection [Lenzen/Peleg ’13]

Approximate skeleton is (Õ (n/h + h), ϵ ) hopset
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Results in O (logn) simultaneous messages over each edge whp

Simulate each such round by O (logn) rounds

Lemma ([Nanongkai ’14])

Can compute (1 + ϵ )-approximate skeleton of Õ (n/h) nodes in time
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Refined Algorithm
Algorithm 2:

1 Determine skeleton nodes: random sample of Õ (n/h) nodes + s
(repeat sampling if too large)

Time: O (D)

2 Compute (1 + ϵ )-approximate h-hop distances from all skeleton nodes
(such that disthG (x ,v ) is known to v)

Time: Õ (h/ϵ + n/h)

3 Make skeleton known to every node

Time: O (n2/h2 + D)

4 Determine set of shortcut edges F
(Internally compute SSSP on skeleton H for every node)

Time: 0

5 Compute h-hop distances from s in G ∪ F

Time: O (h)

Theorem

Can compute (1 + ϵ )-approximate SSSP in time Õ (n2/3/ϵ + D) with h = n2/3
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Computing on Skeleton via Broadcast

Goal: Recurse on skeleton to improve e�iciency

Obstacle:
Edges between skeleton nodes do not exists in communication network!

How to run algorithm “on” skeleton?

Idea: Simulate a round with total of k messages on skeleton by making all
messages global knowledge in time O (k + D)

21 / 36
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Reduction to Blackboard model

Blackboard model:
Communication in synchronized rounds

Write messages on “blackboard” to make
them global knowledge

No congestion constraint, only total size
of messages is relevant

(Shared-memory clique??)

Lemma ([Nanongkai ’14])
Any algorithm with R (k ) rounds and messages of total sizeM (k ) in blackboard
model, can be simulated on skeleton of k nodes in Õ (M (k ) + R (k )D) rounds in
the CONGEST model.
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Back to Our Algorithm
Algorithm 3:

1 Determine skeleton nodes: random sample of Õ (n/h) nodes + s

Time: O (D)

2 Compute (1 + ϵ )-approximate h-hop distances from all skeleton nodes

Time: Õ (h/ϵ + n/h)

3 Compute (1 + ϵ )-approximate shortest paths from s on skeleton
Simulate Algorithm 2 with R (k ) = Õ (h′/ϵ ) and M (k ) = k2/(hϵ ) where
k = Õ (n/h).

Time: O (n2/(ϵh2h′) + Dh′/ϵ )

4 Determine set of shortcut edges F

Time: 0

5 Compute h-hop distances from s in G ∪ F

Time: O (h)

Theorem ([F/Nanongkai ’18])

Can compute (1 + ϵ )-approximate SSSP in time Õ ((
√
nD1/4 + D)/ϵ ) with

h =
√
nD1/4 and h′ =

√
n/D3/4
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Time: Õ (h/ϵ + n/h)

3 Compute (1 + ϵ )-approximate shortest paths from s on skeleton
Simulate Algorithm 2 with R (k ) = Õ (h′/ϵ ) and M (k ) = k2/(hϵ ) where
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Time: Õ (h/ϵ + n/h)

3 Compute (1 + ϵ )-approximate shortest paths from s on skeleton
Simulate Algorithm 2 with R (k ) = Õ (h′/ϵ ) and M (k ) = k2/(hϵ ) where
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Exact SSSP
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Scaling Approach

Two scaling techniques [Gabow ’85]:
1 Bitwise scaling: In each iteration read next bit of weights
2 Recursive scaling: Reduce maximum distance by potential

transformation with approximate distances

We follow recursive scaling:

Similar to [Klein/Subramanian ’97] in PRAM model

Compute approximate distances: 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v )

Potential transformation: w ′(u,v ) = wG (u,v ) + d̂ (s,u) − d̂ (s,v )
Does not change shortest paths

Solve recursively with weights w ′: Maximum distance has halved!

But: Want to keep edge weights non-negative

Additional constraint: d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v )
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Reduction
Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d̂ (s, ·) such that

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)
Then exact SSSP can be computed by calling auxiliary algorithm O (log(nWmax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm
Leverage techniques from approximate SSSP
Careful design to satisfy domination constraint

Fine print:
Inherent dependence on log(Wmax) to bound maximum distance
Must solve directed problem
Must accept 0-weight edges
→ Reduction to positive edge weights
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Careful design to satisfy domination constraint

Fine print:
Inherent dependence on log(Wmax) to bound maximum distance
Must solve directed problem
Must accept 0-weight edges
→ Reduction to positive edge weights
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Auxiliary Algorithm
1 Determine skeleton nodes: random sample of Õ (n/h) nodes + s

Time: O (D)

2 Compute 1
2 -approximate h-hop distances from all skeleton nodes

(Compute 2-approximation and scale down)

Time: Õ (h/ϵ + n/h)

3 Compute exact SSSP on skeleton

Time: ???

4 Determine set of shortcut edges F

Time: 0

5 Compute h-hop distances from s in G ∪ F

Time: O (h)

Theorem

For every node v : 1
2 · distG (s,v ) ≤ d̂ (s,v ) ≤ distG (s,v ) (approximation)

For every edge (u,v ): d̂ (s,v ) ≤ d̂ (s,u) +wG (u,v ) (domination)
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Proof of Domination
Need to show: disthG∪F (s,v ) ≤ disthG∪F (s,u) +wG (u,v )

We show that disthG∪F (s,v ) = distG∪F (s,v )
Then domination follows from triangle inequality

s v

h/2 edges h/2 edges < h/2 edges

< h edges

Proof idea:
Shortest path in G ∪ F has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path π in G
Subdivide π into subsequent chunks of h/2 edges
With high probability, each chunk contains a skeleton node
Following skeleton nodes with skeleton edges would be at least as cheap
as following π (underestimated approximation!)
Shortcut edge in G ∪ F to last skeleton node is as least as cheap
Reason: Triangle inequality for exact distances!
Now: remainder of π has < h edges
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How to Solve on Skeleton

Recall: We need exact SSSP on skeleton to compute shortcuts

Two Variants:
1 Dijkstra’s algorithm on skeleton

I Õ (n/h) iterations
I Time O (D) per iteration

Total running time: Õ (
√
nD)

2 Recurse on skeleton using our new algorithm

Blackboard model:
I R (k ) = Õ (h) rounds
I M (k ) = Õ (nh + n2/h) messages

Total running time: Õ (
√
nD1/4 + n3/5 + D)
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I R (k ) = Õ (h) rounds
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Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main di�erence:

Klein and Subramanian: Skeleton as hopset

Our approach: Shortcuts from skeleton

New trade-o� for directed graphs in PRAM model:

Klein and Subramanian: work Õ (m
√
n) and depth Õ (

√
n)

Our approach: work Õ ((n3/h3 +mh +mn/h)) and depth Õ (h)
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Faster Approximation
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Broadcast Congested Clique
Model:

Network topology is a clique

In each round, every node sends one message to all its neighbors

Lemma
Any broadcast congested clique algorithm with R (k ) rounds can be simulated
on skeleton of k nodes in O ((k + D)R (k )) rounds in the CONGEST model.

Theorem ([Nanongkai ’14])

In directed graphs, can compute (1 + ϵ )-approximate skeleton with k = Õ (
√
n)

nodes in Õ (
√
n) rounds. The algorithm is correct with high probability.

Theorem ([Henzinger/K/Nanongkai ’16])
In undirected graphs, can compute (1 + ϵ )-approximate skeleton with
k = Õ (

√
n) nodes deterministically in Õ (

√
n) rounds.
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Fast Hopset Construction

Theorem ([Henzinger/K/Nanongkai ’16])
Can compute (1 + ϵ )-approximate SSSP on undirected Broadcast Congested
Clique deterministically in no (1) rounds for any given ϵ ≥ 1/ logO (1) .

Recall: Given (h, ϵ )-hopset, (1 + ϵ )-approximate SSSP can be computed in
O (h) rounds.
Ideas:

Observation: distance oracle of [Thorup/Zwick ’05] gives (no (1), ϵ )
hopset in undirected graphs [Bernstein ’09]

Vanilla Thorup/Zwick already requires SSSP computation

Iterative Approach: Bounded-hop SSSP allows hop reduction

Hopset is obtained a�er su�iciently many hop reductions

Remarks:
Hopset lower bound indicates no (1) barrier [Abboud/Bodwin/Pe�ie ’17]

Tight hopsets exist [Huang/Pe�ie ’17] [Elkin/Neiman ’17]
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Gradient Descent Approach
Theorem ([Becker/Karrenbauer/K/Lenzen ’17])
Can compute (1 + ϵ )-approximate SSSP on undirected Broadcast Congested
Clique in logO (1) n/ϵO (1) rounds with high probability

Linear Programming Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t. 


W

−1ATy


∞ ≤ 1

More general problem: Uncapacitated minimum-cost flow
Gradient descent algorithm for finding dual solution
Smooth approximation of infinity norm
Find good update step by routing gradient via a spanner
Crux: Another transshipment instance on sparser graph
Randomized rounding approach for primal tree solution
Due to approximation error: tree solution only bounds sum of distances
(on average guarantee)
Markov-style argument for finding approximate distances
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Conclusion

Take-home message:
Wide array of techniques

Approximate SSSP with nearly tight running time

Exact SSSP seems in reach

Open problems:
1 Match single-source reachability barrier

I Reachability: Õ (
√
nD1/4 + D) rounds [Gha�ari/Udwani ’15]

I Bo�leneck: R (k ) = Õ (h) rounds and M (k ) = Õ (nh + n2/h) messages in
blackboard model

I Also open in PRAM model

2 Find deterministic sublinear exact algorithm
3 Is Õ (

√
n) rounds tight on Broadcast Congested Clique?
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Thank you!

slides: h�ps://www.cosy.sbg.ac.at/~forster/
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