
Distributed Approximate Single-Source Shortest Paths

Sebastian Krinninger

University of Vienna

joint works with

Ruben Monika Andreas Christoph Danupon
Becker Henzinger Karrenbauer Lenzen Nanongkai

1 / 26



One Problem – Two Results

Distributed (1 + ε)-approximate single-source shortest paths (SSSP)

1 Deterministically compute approximate shortest paths in
(
√
n + Diam) · no(1) rounds for ε ≥ 1/polylog(n)

[Henzinger/K/Nanongkai 16]

2 Deterministically compute approximate shortest paths in
(
√
n + Diam) · poly(log n, ε) rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:

Lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

Exact SSSP: O((n log n)2/3Diam1/3) rounds (randomized) [Elkin ’17]

1 + ε : O(n1/2Diam1/4 + Diam) (randomized) [Nanongkai ’14]

Today: Weighted undirected graphs
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Tight and Tighter

Combinatorics & Optimization
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Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds

CONGEST model:

Synchronous rounds (global clock)

Message size O(log n)

In each round, every node sends (at most) one message to each neighbor

Local computation is free

Problem statement:
Initially, each node knows whether it is the source or not

Finally: Every node knows its approximate distance to the source
O�en also: Implicit tree; every node knows next edge on approximate
shortest path to source
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Unweighted Graphs: BFS

s

BFS tree can be computed in O(Diam) rounds
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Reduce to SSSP on Overlay Network [Nanongkai ’14]

1 Solve SSSP on overlay network and make global knowledge
2 Combine local knowledge of local neighborhoods with global knowledge

Sample N = Õ(n1/2) centers (+ source s)
⇒ Every shortest path with ≥ n1/2 edges contains center whp
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Derandomization of Overlay Network [HKN ’16]

Randomization: Hit every shortest path with ≥
√
n edges

u v

Deterministic relaxation: Almost hit every path ≥
√
n edges

u v

εd(u, v)
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Congested Clique
Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node
Heavily studied in recent years!

Simulation: Overlay network as congested clique

t rounds in Congested Clique→ Õ(t · (
√
n + Diam)) rounds in CONGEST
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Hop Reduction
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Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH(u, v) ≤ k · distG(u, v).

Fact: Every graph has a k-spanner of size n1+1/k [Folklore]

Application: Running time T (m, n) ⇒ T (n1+1/k , n)
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Less Known: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)

RAM: O(mh) time

PRAM: O(mh) with O(h) depth

Congested Clique: O(h) rounds

Streaming: h passes with O(n) space

Incremental/Decremental O(mh) [Even/Shiloach ’81, HKN ’14]

Hopset with h = no(1) and size n1+o(1) gives almost tight algorithms
Remaining challenge: Compute hop set e�iciently
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Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Thorup/Zwick’01] 2k − 1 2 O(kn1+ 1
k )

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

⇒ Cannot have α = 1 + ε , h = poly(1/ε) and size n · polylog(n).
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It was too good to be true. . .
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Hop Set Example
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Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes

|Ball(u)| # edges

0 n

n1/k n1+1/k

1 n1−1/k

n2/k n1+1/k

...
...

...
...

k − 1 n1/k

n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)|

# edges

0 n n1/k

n1+1/k

1 n1−1/k n2/k

n1+1/k

...
...

...

...

k − 1 n1/k n

n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball(u) = {v ∈ V | dist(u, v) < dist(u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball(u)| # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u, v) ∈ F i� v ∈ Ball(u)

w(u, v) = distG(u, v)

15 / 26



Parameter Choice

k =

√
log n√
log 4/ε(

4
ε

)k
= n1/k

= no(1)
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(n1/2+o(1), ε)-hop set
Case 1: dist(u0, v) ≤ n1/2+1/k/ε

u0

u1

u2

v0 v1 v2

v

r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ε

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√
log n/

√
log 4/ε

For every node u of priority i and every node v , either (u, v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist(u, u′) ≤ dist(u, v).

Weight ≤ (1 + ε)dist(u0, v)

#Edges ≤
k · dist(u, v)

n1/2
≤

k · n
n1/2

= kn1/2
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Chicken-Egg Problem?

1 Goal: Faster SSSP via hop set
2 Compute hop set by

computing balls
3 Computing balls at least as

hard as SSSP

⇒ Back at problem we wanted
to solve initially?

No! (n1/2+o(1), ε)-hop set only requires balls up to n1/2+o(1) hops
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(n1/2+o(1), ε)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute balls with k priorities in Hi up to n2/k hops
Fi = {(u, v) | v ∈ Ball(u)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ε ′)k ≤ (1 + ε) for ε ′ = 1/(2ε log n)

Omi�ed detail: weighted graphs, use rounding technique
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Beyond Hop Sets

20 / 26



New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])
There is a deterministic algorithm for computing (1 + ε) approximate SSSP in
(
√
n + Diam)poly(log n, ε) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand −(n − 1), other nodes have demand 1
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Shortest Transshipment Problem
Shortest transshipment as linear program:

minimize ‖Wx ‖1 s.t. Ax = b

Dual program:

maximize bTy s.t. ‖W−1ATy ‖∞ ≤ 1

Equivalent:

minimize ‖W−1ATy ‖∞ s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

©­«
∑
i∈[d]

(
eβxi + e−βxi

)ª®¬
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Gradient Descent

Algorithm at a glance:
1 So�-max is di�erentiable→ apply gradient descent

2 Each iteration: solve transshipment problem with di�erent demand
vector b′ depending on current gradient

Congested Clique: Compute gradient in O(1) rounds

3 Key observation: For b′, bad approximation is su�icient
4 Compute spanner on overlay network and solving transshipment on

overlay spanner
Spanner has stretch O(log n) and size Õ(n)

Congested Clique: Spanner can be computed in O(log n) rounds
[Baswana/Sen ’03]

5 Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of Õ(n) edges
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23 / 26



Gradient Descent

Algorithm at a glance:
1 So�-max is di�erentiable→ apply gradient descent
2 Each iteration: solve transshipment problem with di�erent demand

vector b′ depending on current gradient

Congested Clique: Compute gradient in O(1) rounds

3 Key observation: For b′, bad approximation is su�icient
4 Compute spanner on overlay network and solving transshipment on

overlay spanner
Spanner has stretch O(log n) and size Õ(n)
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Technical Details

1 Black-box reduction from SSSP to shortest transshipment only for exact
solutions

2 Transshipment will only guarantee (1 + ε)-approximation on average
3 How to obtain per-node guarantee:

I Solve with increased precision
I Inspect gradient to identify “good nodes”
I Repeat transshipment for “bad” nodes only
I Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman ’16]

More general solvers based on generalized preconditioning

Linear preconditioner based on metric embeddings

With additional analysis: spanner-based oracle as non-linear
preconditioner

No straightforward way of obtaining per-node guarantee
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Conclusion

Main contributions:
Two almost tight algorithms in distributed and streaming models

Combinatorial and continuous tools

Open problems:
PRAM: improve Cohen’s m1+o(1) work with polylog depth?

Deterministic decremental SSSP algorithm
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Tight and Tighter
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