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Comparison:
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o Exact SSSP: O((nlog n)?/> Diam'®) rounds (randomized) [Elkin *17]
@ 1T+e&: O(n”zDiam]/4 + Diam) (randomized) [Nanongkai *14]

Today: Weighted undirected graphs
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Combinatorics & Optimization
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Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds

CONGEST model:
@ Synchronous rounds (global clock)

@ Message size O(log n)

@ In each round, every node sends (at most) one message to each neighbor
@ Local computation is free

Problem statement:
e Initially, each node knows whether it is the source or not

e Finally: Every node knows its approximate distance to the source

Often also: Implicit tree; every node knows next edge on approximate
shortest path to source
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Unweighted Graphs: BFS

BFS tree can be computed in O(Diam) rounds
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Reduce to SSSP on Overlay Network [Nanongkai *14]

@ Solve SSSP on overlay network and make global knowledge
@ Combine local knowledge of local neighborhoods with global knowledge

Sample N = O(n"'?) centers (+ source s)
= Every shortest path with > n'/? edges contains center whp



Derandomization of Overlay Network [HKN *16]

Randomization: Hit every shortest path with > v/n edges
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Derandomization of Overlay Network [HKN *16]

Randomization: Hit every shortest path with > v/n edges

Deterministic relaxation: Almost hit every path > vn edges

ed(u,v)
° ® ® ® ° ° ° °

<e
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Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node
Heavily studied in recent years!
Simulation: Overlay network as congested clique

t rounds in Congested Clique — O(t - (/n + Diam)) rounds in CONGEST
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Hop Reduction
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Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).
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Well Known: Spanners

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,

Definition
disty(u, v) < k - distg(u, v). J

Fact: Every graph has a k-spanner of size n"*V¥ [Folklore]

Application: Running time T(m, n) = T(n'*"/¥ n)
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Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).
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Less Known: Hop Sets

Definition
An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
PRAM: O(mh) with O(h) depth
Congested Clique: O(h) rounds

Streaming: h passes with O(n) space

Incremental/Decremental O(mh) [Even/Shiloach ’81, HKN ’14]

Hopset with h = n®" and size n'**" gives almost tight algorithms

Remaining challenge: Compute hop set efficiently
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Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian ’97] 1 o(L=et Iotgn) o(t?)
[Shi/Spencer "99] 1 o(3) O(nt)
1
[Thorup/Zwick’01] 2k —1 2 O(kn'"%)
1
[Cohen’94] T+e (l8my0logk) O(n"™*% log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
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_1
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1
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Hop Sets: Approaching Optimality
Authors

— /s /= /) /) /| /e /e

Baseline]

Klein/Subramanian ’97]
Shi/Spencer ’99]

Thorup/Zwick’01]
Cohen’94]
Bernstein’09]
Elkin/Neiman’16]
Elkin/Neiman’17]
Huang/Pettie’17]

Abboud/Bodwin/Pettie’16]

Stretch « Hopbound h
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Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(&tgn) o(t?)
[Shi/Spencer "99] 1 o(3) O(nt)
1
[Thorup/Zwick’01] 2k —1 2 O(kn'"%)
1
[Cohen’94] T+e (l8my0logk) O(n"™*% log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
[Elkin/Neiman’16] 1+¢ (g)o(bg k) O(n"*% log nlog k)
_1
[Elkin/Neiman’17] 1+¢ O(%)k+1 O(n1+2"”—1)
1
[Huang/Pettie’17] 1+¢ O(I;()k O(nHZk*‘—T)
1 _
[Abboud/Bodwin/Pettie’16] 1+ ¢ Qu(1)* n't 0

= Cannot have a = 1+ ¢, h = poly(1/¢) and size n - polylog(n). J
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It was too good to be true...
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Hop Set Example



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj;q

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v e A; \ Ajiq

For every node u of priority /:

Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

o pr.i+1
v has priority i if v € A; \ Aj;q (®
.
°
For every node u of priority i: " °
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)} v p@i \
° o o




Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj;q

For every node u of priority /:

Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of

Aj goes to Ajx1 with probability 1/n1/k
L pr.i+1
v has priority i if v € A; \ Aj;q }@/—\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
\ pr!
Hop set:

@ (u,v) € Fiff ve Ball(u)

o w(u,v) = distg(u, v)

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of

Aj goes to Ajx1 with probability 1/n1/k
L pr.i+1
v has priority i if v € A; \ Aj;q }@/—\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
\ pr!
priority  # nodes
0 n
1-1/k
! n Hop set:
: : e (u,v) € Fiff v e Ball(u)
k-1 n'/k

o w(u,v) = distg(u, v)



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

L pr.i+1
v has priority i if v € A; \ Aj;q ?/'\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
. pr)

Expected size: nl*V/k \
priority # nodes |Ball(u)|

0 n n'/k

1-1/k 2/k
! n n Hop set:
: : : @ (u,v) € Fiff ve Ball(u)
k-1 n'/k n

o w(u,v) = distg(u, v)

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj p%\

For every node u of priority /: /

Ball(u) = {v € V| dist(u, v) < dist(u, Ais1)}

Expected size: nl*V/k \ %

priority # nodes |Ball(u)] # edges
0 n nl/k PRSI
1 -1k 2k itk Hop set:

ket il N o (uv) € Fiff v € Ball(u)

o w(u,v) = distg(u, v)

5/26



Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj p%\

For every node u of priority /: /

Ball(u) = {v € V| dist(u, v) < dist(u, Ais1)}

Expected size: nl*V/k \ ¥

priority # nodes |Ball(u)] # edges
0 n nl/k PRSI
1 -1k 2k itk Hop set:

ket il N o (uv) € Fiff v € Ball(u)

L o w(u,v) = distg(u, v)

5/26



Parameter Choice



Parameter Choice



("2, ¢)-hop set

Case 1: dist(ug, v) < n'/>* k)¢
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("2, ¢)-hop set
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(n"/27°_¢)-hop set
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o
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(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ 12

o =n

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).
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(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/**"/k /¢ Y

2T\ 2 Z
§ g1 = 1+; ry
< 0<j<i
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c
‘n
<
L
o
£
.................................................................. .
Up Yo Vi V2 v
0
o

L 4

decreasing distance to v

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
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decreasing distance to v

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

Weight < (1 + €)dist(ug, v)
k-dist(u,v) k-n 4,
nl/2 < n/2 kn

#Edges <
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Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set

@ Compute hop set by
computing balls

@ Computing balls at least as

hard as SSSP *r

= Back at problem we wanted
to solve initially? 7
— —
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Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set =

@ Compute hop set by
computing balls

@ Computing balls at least as
hard as SSSP

= Back at problem we wanted
to solve initially? 3 s
e S

No! (n'/%*°D_¢)-hop set only requires balls up to n'/?*°") hops J
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(n"/27°_¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'’k
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(n1/2+o(1)’ ¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'’k

Algorithm:
fori=1to kdo
Hi=Gu ] F
1<j<i-1
Compute balls with k priorities in H; up to n?/k hops
F;i ={(u,v) | v € Ball(u)}
end
return F = U Fi

1<i<k
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(n1/2+°(1), ¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/k

Algorithm:
fori=1to kdo
Hi=Gu ] F
1<j<i-1
Compute balls with k priorities in H; up to n?/k hops
F;i ={(u,v) | v € Ball(u)}
end
return F = U Fi
1<i<k

Error amplification: (1 + e < (1+¢)fore’ =1/(2¢logn)

Omitted detail: weighted graphs, use rounding technique
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New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(V/n + Diam)poly(log n, €) rounds.
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New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(\/n + Diam)poly(log n, €) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand —(n — 1), other nodes have demand 1
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Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize ||Wx|; st.Ax=b

22/26



Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize || Wx||; s.t.Ax=b

Dual program:

maximize b’y st [WTA Tyl < 1

22/26



Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx|; st.Ax=b
Dual program:
maximize b’y st [WTA Tyl < 1
Equivalent:

minimize |[W'ATylle st.b'm =1

22/26



Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx|; st.Ax=b
Dual program:
maximize b’y st [WTA Tyl < 1
Equivalent:
minimize |[W'ATylle st.b'm =1
We approximate || - || by soft-max:

Isep(x) := %ln Z (eﬁXf i e—ﬁx,-)

ield]
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Gradient Descent

Algorithm at a glance:

@ Soft-max is differentiable — apply gradient descent
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Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient
Congested Clique: Compute gradient in O(1) rounds

© Key observation: For b’, bad approximation is sufficient

@ Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)
Congested Clique: Spanner can be computed in O(log n) rounds
[Baswana/Sen *03]

@ Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges
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@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average
© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]
@ More general solvers based on generalized preconditioning
@ Linear preconditioner based on metric embeddings

e With additional analysis: spanner-based oracle as non-linear
preconditioner

No straightforward way of obtaining per-node guarantee
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Conclusion

Main contributions:
e Two almost tight algorithms in distributed and streaming models

@ Combinatorial and continuous tools
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Conclusion

Main contributions:
e Two almost tight algorithms in distributed and streaming models

@ Combinatorial and continuous tools

Open problems:

1+0(1)

@ PRAM: improve Cohen’s m work with polylog depth?

@ Deterministic decremental SSSP algorithm
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Tight and Tighter
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