Distributed Approximate Single-Source Shortest Paths

Sebastian Krinninger
University of Vienna

joint works with

.7
Ruben Monika Andreas Christoph ~ Danupon
Becker Henzinger Karrenbauer Lenzen Nanongkai

1/26

One Problem — Two Results

Distributed (1 + ¢)-approximate single-source shortest paths (SSSP)

26

One Problem — Two Results

Distributed (1 + ¢)-approximate single-source shortest paths (SSSP)

© Deterministically compute approximate shortest paths in
(v'n + Diam) - n°" rounds for ¢ > 1/ polylog(n)
[Henzinger/K/Nanongkai 16]

26

One Problem — Two Results

Distributed (1 + ¢)-approximate single-source shortest paths (SSSP)

© Deterministically compute approximate shortest paths in
(v/n + Diam) - " rounds for ¢ > 1/ polylog(n)
[Henzinger/K/Nanongkai 16]

@ Deterministically compute approximate shortest paths in
(V/n + Diam) - poly(log n, €) rounds [Becker/Lenzen/Karrenbauer/K 16]

26

One Problem — Two Results

Distributed (1 + ¢)-approximate single-source shortest paths (SSSP)

© Deterministically compute approximate shortest paths in
(v/n + Diam) - " rounds for ¢ > 1/ polylog(n)
[Henzinger/K/Nanongkai 16]

@ Deterministically compute approximate shortest paths in
(V/n + Diam) - poly(log n, €) rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:
o Lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]
o Exact SSSP: O((nlog n)?/> Diam'®) rounds (randomized) [Elkin *17]
@ 1T+e&: O(n”zDiam”4 + Diam) (randomized) [Nanongkai *14]

26

One Problem — Two Results

Distributed (1 + ¢)-approximate single-source shortest paths (SSSP)

© Deterministically compute approximate shortest paths in
(v'n + Diam) - n°" rounds for ¢ > 1/ polylog(n)
[Henzinger/K/Nanongkai 16]

@ Deterministically compute approximate shortest paths in
(V/n + Diam) - poly(log n, €) rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:
o Lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]
o Exact SSSP: O((nlog n)?/> Diam'®) rounds (randomized) [Elkin *17]
@ 1T+e&: O(n”zDiam]/4 + Diam) (randomized) [Nanongkai *14]

Today: Weighted undirected graphs

26

Tight and Tighter

3/26

Tight and Tighter

Combinatorics & Optimization

3/26

Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds

26

Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds

CONGEST model:

@ Synchronous rounds (global clock)

@ Message size O(log n)

@ In each round, every node sends (at most) one message to each neighbor

Local computation is free

Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds

CONGEST model:
@ Synchronous rounds (global clock)

@ Message size O(log n)

@ In each round, every node sends (at most) one message to each neighbor
@ Local computation is free

Problem statement:
e Initially, each node knows whether it is the source or not

e Finally: Every node knows its approximate distance to the source

Often also: Implicit tree; every node knows next edge on approximate
shortest path to source

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

BFS tree can be computed in O(Diam) rounds

5/26

Reduce to SSSP on Overlay Network [Nanongkai *14]

6/26

Reduce to SSSP on Overlay Network [Nanongkai *14]

@ Solve SSSP on overlay network and make global knowledge
@ Combine local knowledge of local neighborhoods with global knowledge

Reduce to SSSP on Overlay Network [Nanongkai *14]

@ Solve SSSP on overlay network and make global knowledge
@ Combine local knowledge of local neighborhoods with global knowledge

Sample N = O(n"'?) centers (+ source s)
= Every shortest path with > n'/? edges contains center whp

Derandomization of Overlay Network [HKN *16]

Randomization: Hit every shortest path with > v/n edges

7/26

Derandomization of Overlay Network [HKN *16]

Randomization: Hit every shortest path with > v/n edges

Deterministic relaxation: Almost hit every path > vn edges

ed(u,v)
° ® ® ® ° ° ° °

<e

7/26

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node
Heavily studied in recent years!

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node
Heavily studied in recent years!
Simulation: Overlay network as congested clique

t rounds in Congested Clique — O(t - (/n + Diam)) rounds in CONGEST

8/26

Hop Reduction

9/26

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

10/26

Well Known: Spanners

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,

Definition
disty(u, v) < k - distg(u, v). J

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u, v) < k - distg(u, v).

10/26

Well Known: Spanners

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,

Definition
disty(u, v) < k - distg(u, v). J

Fact: Every graph has a k-spanner of size n"*V¥ [Folklore]

Application: Running time T(m, n) = T(n'*"/¥ n)

10/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

/

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Fact: Every graph has a (n°™, €)-hop set of size n'*°M [Cohen *94] (for
e > 1/polylogn)

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?

SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
@ PRAM: O(mh) with O(h) depth

11/26

Less Known: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?

SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
@ PRAM: O(mh) with O(h) depth
e Congested Clique: O(h) rounds

11/26

Less Known: Hop Sets

Definition
An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?

SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
@ PRAM: O(mh) with O(h) depth
e Congested Clique: O(h) rounds

@ Streaming: h passes with O(n) space

Less Known: Hop Sets

Definition
An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
PRAM: O(mh) with O(h) depth
Congested Clique: O(h) rounds

Streaming: h passes with O(n) space

Incremental/Decremental O(mh) [Even/Shiloach ’81, HKN ’14]

11/26

Less Known: Hop Sets

Definition
An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
PRAM: O(mh) with O(h) depth
Congested Clique: O(h) rounds

Streaming: h passes with O(n) space

Incremental/Decremental O(mh) [Even/Shiloach ’81, HKN ’14]

1+0(1)

Hopset with h = n°" and size n gives almost tight algorithms

Less Known: Hop Sets

Definition
An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application?
SSSP up to h hops (Bellman-Ford)
@ RAM: O(mh) time
PRAM: O(mh) with O(h) depth
Congested Clique: O(h) rounds

Streaming: h passes with O(n) space

Incremental/Decremental O(mh) [Even/Shiloach ’81, HKN ’14]

Hopset with h = n®" and size n'**" gives almost tight algorithms

Remaining challenge: Compute hop set efficiently

Hop Sets: Approaching Optimality
Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)

12/26

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(&tgn) o(t?)

[Shi/Spencer "99] 1 o(3) O(nt)

12/26

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(&tgn) o(t?)
[Shi/Spencer "99] 1 o(3) O(nt)
[Thorup/Zwick’01] 2k — 1 2 O(an%)

12/26

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian ’97] 1 o(L=et Iotgn) o(t?)
[Shi/Spencer "99] 1 o(3) O(nt)
1
[Thorup/Zwick’01] 2k —1 2 O(kn'"%)
1
[Cohen’94] T+e (l8my0logk) O(n"™*% log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
[Elkin/Neiman’16] 1+¢ (g)o(bg k) O(n"*% log nlog k)
_1
[Elkin/Neiman’17] 1+¢ O(%)k+1 O(n1+2"”—1)
1
[Huang/Pettie’17] 1+¢ O(I;()k O(nHZk“—T)

12/26

Hop Sets: Approaching Optimality
Authors

— /s /= /) /) /| /e /e

Baseline]

Klein/Subramanian ’97]
Shi/Spencer ’99]

Thorup/Zwick’01]
Cohen’94]
Bernstein’09]
Elkin/Neiman’16]
Elkin/Neiman’17]
Huang/Pettie’17]

Abboud/Bodwin/Pettie’16]

Stretch « Hopbound h

1

1
1

2k — 1
T+e¢
T+e¢
T+e¢
T+e¢
T+e¢

T+e¢

1
O(n Iotg n)
o(})
2
(lo%1)0(log k)
O(%)k log n
(#)O(Iog k)
O(%)k+]
o5

k
Qu(1)

Size

o(n?)

o(t?)

O(nt)

O(kn™ %)

O(nH% log n)
Okn™ %)

O(nH% log nlog k)
("7 T)

1
O(n1+2k+1_1)
1
n1+2"—1_5

12/26

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(&tgn) o(t?)
[Shi/Spencer "99] 1 o(3) O(nt)
1
[Thorup/Zwick’01] 2k —1 2 O(kn'"%)
1
[Cohen’94] T+e (l8my0logk) O(n"™*% log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
[Elkin/Neiman’16] 1+¢ (g)o(bg k) O(n"*% log nlog k)
_1
[Elkin/Neiman’17] 1+¢ O(%)k+1 O(n1+2"”—1)
1
[Huang/Pettie’17] 1+¢ O(I;()k O(nHZk*‘—T)
1 _
[Abboud/Bodwin/Pettie’16] 1+ ¢ Qu(1)* n't 0

= Cannot have a = 1+ ¢, h = poly(1/¢) and size n - polylog(n). J

12/26

It was too good to be true...

13/26

Hop Set Example

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj;q

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v e A; \ Ajiq

For every node u of priority /:

Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

o pr.i+1
v has priority i if v € A; \ Aj;q (®
.
°
For every node u of priority i: " °
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)} v p@i \
° o o

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj;q

For every node u of priority /:

Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of

Aj goes to Ajx1 with probability 1/n1/k
L pr.i+1
v has priority i if v € A; \ Aj;q }@/—\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
\ pr!
Hop set:

@ (u,v) € Fiff ve Ball(u)

o w(u,v) = distg(u, v)

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of

Aj goes to Ajx1 with probability 1/n1/k
L pr.i+1
v has priority i if v € A; \ Aj;q }@/—\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
\ pr!
priority # nodes
0 n
1-1/k
! n Hop set:
: : e (u,v) € Fiff v e Ball(u)
k-1 n'/k

o w(u,v) = distg(u, v)

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

L pr.i+1
v has priority i if v € A; \ Aj;q ?/'\
For every node u of priority /: /
Ball(u) = {v € V| dist(u, v) < dist(u, Ai+1)}
. pr)

Expected size: nl*V/k \
priority # nodes |Ball(u)|

0 n n'/k

1-1/k 2/k
! n n Hop set:
: : : @ (u,v) € Fiff ve Ball(u)
k-1 n'/k n

o w(u,v) = distg(u, v)

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj p%\

For every node u of priority /: /

Ball(u) = {v € V| dist(u, v) < dist(u, Ais1)}

Expected size: nl*V/k \ %

priority # nodes |Ball(u)] # edges
0 n nl/k PRSI
1 -1k 2k itk Hop set:

ket il N o (uv) € Fiff v € Ball(u)

o w(u,v) = distg(u, v)

5/26

Simple Hop Set Based on Balls (following [Thorup/zwick "06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i if v € A; \ Aj p%\

For every node u of priority /: /

Ball(u) = {v € V| dist(u, v) < dist(u, Ais1)}

Expected size: nl*V/k \ ¥

priority # nodes |Ball(u)] # edges
0 n nl/k PRSI
1 -1k 2k itk Hop set:

ket il N o (uv) € Fiff v € Ball(u)

L o w(u,v) = distg(u, v)

5/26

Parameter Choice

Parameter Choice

("2, ¢)-hop set

Case 1: dist(ug, v) < n'/>* k)¢

7/26

("2, ¢)-hop set

Case 2: dist(ug, v) > n1/2+1/k/£

7/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ 12
o =n
*--.-.
Uy Vo v
o

7/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ 12

o =n

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

17/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ o

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

17/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ o

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

17/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/**"/k /¢ Y

2T\ 2 Z
§ g1 = 1+; ry
< 0<j<i
on
c
‘n
<
L
o
£
.. .
Up Yo Vi V2 v
0
o

L 4

decreasing distance to v

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

17/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ 12
o =n

2w 2
2 rigr =1+ - er
& n € 0<j<i
)
.5 < n1/2n1/k
[o)
L= N it -G k = Nlgg n/+/log4/e
Up Yo Vi V2 v
o

S
4

decreasing distance to v

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

Weight < (1 + €)dist(ug, v)

17/26

(n"/27°_¢)-hop set

Case 2: dist(ug, v) > n'/?*"k /¢ 12
o =n
2T\ 2
2 rigr =1+ - er
5 €] o<<i
&
£ < p/21k
[o)
= Rt k = ylgg n/+/log 4/e
Uo Yo Vi V2 v

S
4

decreasing distance to v

For every node u of priority i and every node v, either (u, v) € H, or 3u’ of
priority i + 1s. t. dist(u, u") < dist(u, v).

Weight < (1 + €)dist(ug, v)
k-dist(u,v) k-n 4,
nl/2 < n/2 kn

#Edges <

17/26

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set

@ Compute hop set by
computing balls

@ Computing balls at least as

hard as SSSP *r

= Back at problem we wanted
to solve initially? 7
— —

18/26

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set =

@ Compute hop set by
computing balls

@ Computing balls at least as
hard as SSSP

= Back at problem we wanted
to solve initially? 3 s
e S

No! (n'/%*°D_¢)-hop set only requires balls up to n'/?*°") hops J

18/26

(n"/27°_¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'’k

19/26

(n1/2+o(1)’ ¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'’k

Algorithm:
fori=1to kdo
Hi=Gu] F
1<j<i-1
Compute balls with k priorities in H; up to n?/k hops
F;i ={(u,v) | v € Ball(u)}
end
return F = U Fi

1<i<k

19/26

(n1/2+°(1), ¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/k

Algorithm:
fori=1to kdo
Hi=Gu] F
1<j<i-1
Compute balls with k priorities in H; up to n?/k hops
F;i ={(u,v) | v € Ball(u)}
end
return F = U Fi

1<i<k

Error amplification: (1 + e < (1+¢)fore’ =1/(2¢logn)

(n1/2+°(1), ¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/k

Algorithm:
fori=1to kdo
Hi=Gu] F
1<j<i-1
Compute balls with k priorities in H; up to n?/k hops
F;i ={(u,v) | v € Ball(u)}
end
return F = U Fi
1<i<k

Error amplification: (1 + e < (1+¢)fore’ =1/(2¢logn)

Omitted detail: weighted graphs, use rounding technique

Beyond Hop Sets

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(V/n + Diam)poly(log n, €) rounds.

21/26

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(\/n + Diam)poly(log n, €) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

21/26

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(\/n + Diam)poly(log n, €) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

21/26

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing (1 + ¢) approximate SSSP in
(\/n + Diam)poly(log n, €) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand —(n — 1), other nodes have demand 1

21/26

Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize ||Wx|; st.Ax=b

22/26

Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize || Wx||; s.t.Ax=b

Dual program:

maximize b’y st [WTA Tyl < 1

22/26

Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx|; st.Ax=b
Dual program:
maximize b’y st [WTA Tyl < 1
Equivalent:

minimize |[W'ATylle st.b'm =1

22/26

Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx|; st.Ax=b
Dual program:
maximize b’y st [WTA Tyl < 1
Equivalent:
minimize |[W'ATylle st.b'm =1
We approximate || - || by soft-max:

Isep(x) := %ln Z (eﬁXf i e—ﬁx,-)

ield]

22/26

Gradient Descent

Algorithm at a glance:

@ Soft-max is differentiable — apply gradient descent

23/26

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

23/26

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

© Key observation: For b’, bad approximation is sufficient

23/26

Gradient Descent

Algorithm at a glance:

o
2]

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)

Gradient Descent

Algorithm at a glance:

o
2]

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)

Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges

Gradient Descent

Algorithm at a glance:

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient
Congested Clique: Compute gradient in O(1) rounds

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)

Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient
Congested Clique: Compute gradient in O(1) rounds

© Key observation: For b’, bad approximation is sufficient

@ Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)
Congested Clique: Spanner can be computed in O(log n) rounds
[Baswana/Sen *03]

@ Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions
@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions
@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]

@ More general solvers based on generalized preconditioning

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions
@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]
@ More general solvers based on generalized preconditioning

@ Linear preconditioner based on metric embeddings

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions
@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]
@ More general solvers based on generalized preconditioning
@ Linear preconditioner based on metric embeddings

e With additional analysis: spanner-based oracle as non-linear
preconditioner

24/26

Technical Detalils

@ Black-box reduction from SSSP to shortest transshipment only for exact

solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average
© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify “good nodes”

» Repeat transshipment for “bad” nodes only

» Analysis: Total “mass” reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman *16]
@ More general solvers based on generalized preconditioning
@ Linear preconditioner based on metric embeddings

e With additional analysis: spanner-based oracle as non-linear
preconditioner

No straightforward way of obtaining per-node guarantee

24/26

Conclusion

Main contributions:
e Two almost tight algorithms in distributed and streaming models

@ Combinatorial and continuous tools

25/26

Conclusion

Main contributions:
e Two almost tight algorithms in distributed and streaming models

@ Combinatorial and continuous tools

Open problems:

1+0(1)

@ PRAM: improve Cohen’s m work with polylog depth?

@ Deterministic decremental SSSP algorithm

25/26

Tight and Tighter

26/26

