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Introduction

The problem:
Single-source shortest paths

Undirected graphs

Positive edge weights ∈ {1, . . . ,poly (n)}

Goal: (1 + ϵ )- or (1 + o(1))-approximation (ϵ = 1/polylogn)

Distributed se�ing:
Network modeled as undirected graph

Processors can communicate with neighbors

CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

Goal: every node knows distance to source
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Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]

O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1) ) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic
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Summary of Results
Theorem (CONGEST)
There is a deterministic distributed algorithm that, on any weighted undirected
network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+o(1) + D1+o(1) ) rounds.

Theorem (Congested Clique)
There is a deterministic distributed algorithm that, on any weighted congested
clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in O(no(1) ) rounds.

Theorem (Streaming)
There is a deterministic streaming algorithm that, given any weighted
undirected graph, computes (1 + o(1))-approximate shortest paths between a
given source node s and every other node in O(no(1) log W ) passes with
O(n1+o(1) log W ) space.
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Computing Overlay Network
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Overlay Network

1 Sample N = O(
√

n log n) centers (+ source s)
⇒ Every shortest path with ≥

√
n edges contains center whp

2 For every node: compute approx. shortest paths to centers within
√

n
edges in O(

√
nϵ−1) rounds (source detection [Lenzen/Peleg ’13])

3 Su�icient to solve SSSP on overlay network using hop set
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Derandomization

Property from randomization

O(
√

n log n) centers that hit every shortest path with ≥
√

n edges

u v

Deterministic relaxation

O(
√

nϵ−1 log n) centers that almost hit every path with ≥
√

n edges

u v

ϵd (u,v )
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Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β )-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v )

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs
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Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . . ]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW ))
(1+ ϵ )-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v ) of node v : minimum i such that |BallGi (v, (2 + ϵ )
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v ) ≤ 2ϵw (π ).

⇒ Determine centers by computing ruling set for all type classes
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Computing Hop Set on Overlay
Network
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Hop Sets
Definition
An (h,ϵ )-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ )dist (u,v ).

Application: SSSP up to small #edges can be done fast in overlay network
A: (logO(1) n,ϵ )-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ )-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ )-hop set of size O(n) [Miller et al. ’15]
Our contribution: Fast computation of B on overlay network
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Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v ) = {u ∈ V | dist (u,v ) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v ) ∈ F i� u ∈ Cluster (v )
w (u,v ) = distG (u,v )

Guarantee: ((4/ϵ )k ,ϵ )-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k ) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ )-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16
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(u,v ) ∈ F i� u ∈ Cluster (v )
w (u,v ) = distG (u,v )

Guarantee: ((4/ϵ )k ,ϵ )-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k ) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ )-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)
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Chicken-Egg Problem?

1 Goal: Faster SSSP via hop set
2 Compute hop set by

computing clusters
3 Computing clusters at least

as hard as SSSP

⇒ Back at problem we wanted
to solve initially?

No! Iterative computation starting with

SSSP up to small #hops is cheap in overlay network

Clusters up to small #hops provide su�icient shortcu�ing to make
progress in each iteration
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Computing (no(1),ϵ )-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute clusters with k priorities in Hi up to n2/k hops
Fi = {(u,v ) | u ∈ Cluster (v )}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique
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Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N` ) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N` ) = O(d · Diam + N )

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v ) |) = Õ(n1/k ·Diam+N1+1/k )

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1) ) (N ≈
√

n))
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Conclusion

Main contributions:

Almost tight algorithm

Deterministic overlay network and deterministic hop set

Open problems:
no(1) → logO(1) n
Be�er hop set?

Improve dependence on ϵ

O(n) rounds optimal for exact SSSP?
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Example: (n1/2+o(1),ϵ )-hop set
Case 1: dist (u0,v ) ≤ n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2

v

r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v ) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v ).

Weight ≤ (1 + ϵ )dist (u0,v )

#Edges ≤
k · dist (u,v )

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1
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