A Deterministic Almost-Tight Distributed Algorithm
for Approximating Single-Source Shortest Paths

Monika Henzinger' Sebastian Krinninger? Danupon Nanongkai?

TUniversity of Vienna
2Max Planck Institute for Informatics

3KTH Royal Institute of Technology

STOC 2016

16

Introduction

The problem:
@ Single-source shortest paths
@ Undirected graphs
@ Positive edge weights € {1,...,poly(n)}
@ Goal: (1+ €)-or (1+ o(1))-approximation (¢ = 1/polylogn)

16

Introduction

The problem:
@ Single-source shortest paths
@ Undirected graphs
@ Positive edge weights € {1,...,poly(n)}
@ Goal: (1+ €)-or (1+ o(1))-approximation (¢ = 1/polylogn)

Distributed setting:

@ Network modeled as undirected graph

@ Processors can communicate with neighbors

@ CONGEST model: synchronous rounds, message size O(log n)
@ Running time = number of rounds
°

Goal: every node knows distance to source

Overview

Upper bounds:
exact

O(n)

det.

[Bellman-Ford]

Overview

Upper bounds:
exact
O(e 'loge™)

O(n)
O(n'/?*€ + Diam)

det.
rand.

[Bellman-Ford]
[Lenzen, Patt-Shamir *13]

Overview

Upper bounds:
exact

O(e 'loge™)
1+e€

O(n)
O(n'/?*€ + Diam)
O(n'/?*Diam"* + Diam)

det.
rand.
rand.

[Bellman-Ford]
[Lenzen, Patt-Shamir *13]
[Nanongkai "14]

Overview

Upper bounds:
exact
O(e 'loge™)
1+e€
1+ o(1)

O(n)

O(n'/?*€ + Diam)
O(n'2Diam"* + Diam)
O(n1/2+o(1) + Diam1+o(1))

det.
rand.
rand.
det.

[Bellman-Ford]

[Lenzen, Patt-Shamir *13]
[Nanongkai "14]

[Our result]

Overview

Upper bounds:

exact O(n) det. [Bellman-Ford]

O(e 'loge™") O(n'/?*¢ + Diam) rand. [Lenzen, Patt-Shamir *13]
1+¢ O(n'?Diam"* + Diam) rand. [Nanongkai 14]
1+ o(1) O(n'?*°M) 4 Diam'°(M) det. [Our result]

Lower bound: Q(n'/?/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Overview

Upper bounds:

exact O(n) det. [Bellman-Ford]

O(e 'loge™") O(n'/?*¢ + Diam) rand. [Lenzen, Patt-Shamir *13]
1+¢ O(n'?Diam"* + Diam) rand. [Nanongkai 14]
1+ o(1) O(n'?*°M) 4 Diam'°(M) det. [Our result]

Lower bound: Q(n'/?/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:

@ Compute overlay network

@ Compute hop set and approximate SSSP on overlay network

Overview

Upper bounds:

exact O(n) det. [Bellman-Ford]

O(e 'loge™") O(n'/?*¢ + Diam) rand. [Lenzen, Patt-Shamir *13]
1+¢ O(n'?Diam"* + Diam) rand. [Nanongkai 14]
1+ o(1) O(n'?*°M) 4 Diam'°(M) det. [Our result]

Lower bound: Q(n'/?/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
@ Compute overlay network
Derandomization of “hitting paths” argument at cost of approximation

@ Compute hop set and approximate SSSP on overlay network
Deterministic hop set using greedy hitting set heuristic

Summary of Results
Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected

network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n'/**°(") + p'*°M) rounds.

Summary of Results
Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected

network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+°(1) + DHO(])) rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested

clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in 0(n°M) rounds.

v

Summary of Results
Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected
network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+°(1) + DHO(T)) rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested

clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in 0(n°M) rounds.

Theorem (Streaming)

There is a deterministic streaming algorithm that, given any weighted
undirected graph, computes (1 + o(1))-approximate shortest paths between a
given source node s and every other node in O(n°" log W) passes with
o(n"*°" log W) space.

Computing Overlay Network

Overlay Network

&‘ v -

6/16

Overlay Network

@ Sample N = O(V/nlog n) centers (+ source s)
= Every shortest path with > /n edges contains center whp

5/ 16

Overlay Network

@ Sample N = O(V/nlog n) centers (+ source s)
= Every shortest path with > /n edges contains center whp

@ For every node: compute approx. shortest paths to centers within v/n
edges in O(Vne™") rounds (source detection [Lenzen/Peleg *13])

5/ 16

Overlay Network

@ Sample N = O(V/nlog n) centers (+ source s)
= Every shortest path with > /n edges contains center whp

@ For every node: compute approx. shortest paths to centers within v/n
edges in O(Vne™") rounds (source detection [Lenzen/Peleg *13])

@ Sufficient to solve SSSP on overlay network using hop set

5/ 16

Derandomization

Property from randomization

O(Vnlog n) centers that hit every shortest path with > v/n edges

Derandomization

Property from randomization

O(Vnlog n) centers that hit every shortest path with > v/n edges

Deterministic relaxation

O(Vne"log n) centers that almost hit every path with > v/n edges

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that

@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < f3

16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that

@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < f3

Lemma ([Goldberg et al. '88])

A (¢, clog n)-ruling set can be computed in O(c log n) rounds.

16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that

@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < f3

Lemma ([Goldberg et al. '88])

A (¢, clog n)-ruling set can be computed in O(c log n) rounds.

Our setting:

e U = all nodes v with |Ball(v, Vn)| > Vn
e c=eVn

8/16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that

@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < 8

Lemma ([Goldberg et al. '88])

A (¢, clog n)-ruling set can be computed in O(c log n) rounds.

Our setting:

e U = all nodes v with |Ball(v, Vn)| > Vn
e c=eVn

@ Any shortest u— v path with > v/nedges: ruler in distance < edist(u,v)

8/16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that

@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < 8

Lemma ([Goldberg et al. '88])

A (c,clog n)-ruling set can be computed in O(clog n) rounds.

Our setting:
e U = all nodes v with |Ball(v, Vn)| > Vn
e c=eVn
@ Any shortest u— v path with > v/nedges: ruler in distance < edist(u,v)
@ Uniquely assign € v/n/2 nodes to every ruler = |T| < 2 \Vn/e

8/16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(e, p)-ruling set R of U is a set of rulers such that
@ Every pair of rulers in R is at distance > a from each other

@ Every node in U has a ruler in R at distance < 8

Lemma ([Goldberg et al. '88])

A (c,clog n)-ruling set can be computed in O(clog n) rounds.

Our setting:
e U = all nodes v with |Ball(v, Vn)| > Vn
e c=eVn
@ Any shortest u— v path with > v/nedges: ruler in distance < edist(u,v)
@ Uniquely assign € V/n/2 nodes to every ruler = |T| < 2v/n/e
Crucial: “weight = #edges” in unweighted graphs

8/16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops J

9/16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops)

Well-known weight rounding [Bernstein *09/13, Madry 10, ...]

G;: round up edge weights to next multiple of €2/ v/n (Vi = 1to log (nW))
(1+ €)-approximation of shortest paths with vn edges and weight 2’ ... 2"
Intuition: “weight < #edges”

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops)

Well-known weight rounding [Bernstein *09/13, Madry 10, ...]

G;: round up edge weights to next multiple of €2/ v/n (Vi = 1to log (nW))
(1+ €)-approximation of shortest paths with vn edges and weight 2’ ... 2"
Intuition: “weight < #edges”

Not enough: we also want “#edges < weight”

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops)

Well-known weight rounding [Bernstein *09/13, Madry 10, ...]

G;: round up edge weights to next multiple of €2/ v/n (Vi = 1to log (nW))
(1+ €)-approximation of shortest paths with vn edges and weight 2’ ... 2"
Intuition: “weight < #edges”

Not enough: we also want “#edges < weight”

Type t(v) of node v: minimum i such that |Ballg,(v,(2 + €) Vn)| > e Vn J

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops)

Well-known weight rounding [Bernstein *09/13, Madry 10, ...]

G;: round up edge weights to next multiple of €2/ v/n (Vi = 1to log (nW))
(1+ €)-approximation of shortest paths with vn edges and weight 2’ ... 2"
Intuition: “weight < #edges”

Not enough: we also want “#edges < weight”

Type t(v) of node v: minimum i such that |Ballg,(v,(2 + €) Vn)| > e Vn J

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma
Every path with \/n edges contains a node v such that 2") < 2ew(r). J

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ~ #hops)

Well-known weight rounding [Bernstein *09/13, Madry 10, ...]

G;: round up edge weights to next multiple of €2/ v/n (Vi = 1to log (nW))
(1+ €)-approximation of shortest paths with vn edges and weight 2" . .. 2"
Intuition: “weight < #edges”

Not enough: we also want “#edges < weight”

Type t(v) of node v: minimum i such that |Ballg,(v,(2 + €) Vn)| > e Vn J

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma
Every path with \/n edges contains a node v such that 2") < 2ew(r). J

= Determine centers by computing ruling set for all type classes

Computing Hop Set on Overlay
Network

111111

Hop Sets
Definition

An (h,e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

11/16

Hop Sets
Definition

An (h,e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

11/16

Hop Sets
Definition

An (h,e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application: SSSP up to small #edges can be done fast in overlay network

11/16

Hop Sets
Definition

An (h,e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (Iog®" n,e)-hop set of size n'*°) [Cohen *94]

B: (n°", €)-hop set of size n'*°(V) [Bernstein *09]

C: (n”,e)-hop set of size O(n) [Miller et al. 15]

11/16

Hop Sets
Definition

An (h,e)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (Iog®" n,e)-hop set of size n'*°) [Cohen *94]

B: (n°", €)-hop set of size n'*°(V) [Bernstein *09]

C: (n”,e)-hop set of size O(n) [Miller et al. 15]

Our contribution: Fast computation of B on overlay network

11/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A2 A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i iff v e A; \ Ajiq

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A2 A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i iff v e A; \ Ajiq

For every node u of priority i:

Cluster(v) = {u € V| dist(u,v) < dist(u,Ai+1)}

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A)2 A 2 -2 Ar = 0 where node of pr. i +1

Aj goes to Ajx1 with probability 1/n1/k e

v has priority i iff v € A; \ Aiyq " °
° |

For every node u of priority i: i (®)pr. i

Cluster(v) = {u € V| dist(u,v) < dist(u,Ai+1)} ° e o

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

pr. i+ 1

V=A2 A 2 -2 A = 0 where node of
Aj goes to Ajx1 with probability 1/n1/k

v has priority i iff v e A; \ Ajiq

For every node u of priority i:
Cluster(v) = {u € V| dist(u,v) < dist(u,A,-H)}J

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A)2 A 2--- 2 Ar = 0 where node of pr.i+1
Aj goes to Ajy1 with probability 1/n'/k

v has priority i iff v e A; \ Ajiq

—_

For every node u of priority i:
Cluster(v) = {u € V| dist(u,v) < dist(u,A,-H)J

Hop set:
@ (u,v) € Fiff u e Cluster(v)
o w(u,v) = distg(u,v)

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A)2 A 2--- 2 Ar = 0 where node of pr.i+1
Aj goes to Ajy1 with probability 1/n'/k

v has priority i iff v e A; \ Ajiq

—_

For every node u of priority i:
Cluster(v) = {u € V| dist(u,v) < dist(u,A,-H)J

Hop set:
@ (u,v) € Fiff u e Cluster(v)
o w(u,v) = distg(u,v)
@ Guarantee: ((4/e)k,e)—hop set [Bernstein 09, Thorup/Zwick ’06]
@ Expected size: O(kn'*/k) [Thorup/Zwick ’01]

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A)2 A 2--- 2 Ar = 0 where node of pr.i+1
Aj goes to Ajy1 with probability 1/n'/k

v has priority i iff v e A; \ Ajiq

—_

For every node u of priority i:
Cluster(v) = {u € V| dist(u,v) < dist(u,A,-H)}J

Hop set:
@ (u,v) € Fiff u e Cluster(v)
o w(u,v) = distg(u,v)
@ Guarantee: ((4/e)k,e)—hop set [Bernstein 09, Thorup/Zwick ’06]
@ Expected size: O(kn'*/k) [Thorup/Zwick ’01]
°

With k = +/log n/ v/log 4/e: (n°Y, €)-hop set of size '+

12/16

Hop Set Based on Clusters [Thorup/Zwick *01]

V=A2 A 22 A¢ = 0 where node of pr. i+ 1

Aj goes to Ajx1 with probability 1/n1/k
v has priority i iff v e A; \ Ajiq

—_

For every node u of priority i:
Cluster(v) = {u € V| dist(u,v) < dist(u,A,-H)}J

Hop set:

@ (u,v) € Fiff u e Cluster(v)
w(u,v) = distg(u,v)
Guarantee: ((4/e)k,e)—hop set [Bernstein 09, Thorup/Zwick ’06]

Expected size: O(kn'*/k) [Thorup/Zwick ’01]

With k = +flog n/ \/log 4/e: (n°V,€)-hop set of size n'*o()
Derandomization: choose A;;1 from A; by greedy hitting set heuristic
(Sequential, but affordable in overlay network)

12/16

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set

@ Compute hop set by
computing clusters

© Computing clusters at least

as hard as SSSP “r

= Back at problem we wanted
to solve initially?

13/16

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set 2

@ Compute hop set by
computing clusters

© Computing clusters at least
as hard as SSSP ﬂ\

= Back at problem we wanted
to solve initially? 3
. = -

No! Iterative computation starting with
@ SSSP up to small #hops is cheap in overlay network

@ Clusters up to small #hops provide sufficient shortcutting to make
progress in each iteration

Computing (n°", e)-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of n'/¥

14/16

Computing (n°", e)-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute clusters with k priorities in H; up to n*/*

Fi = {(u,v) | u e Cluster(v)}
end
return f = U F;

1<i<k

hops

14/16

Computing (n°", e)-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute clusters with k priorities in H; up to n*/*

Fi = {(u,v) | u e Cluster(v)}
end
return f = U F;

1<i<k

hops

Error amplification: (1 + e < (1+e€)fore’ =1/(2e log n)

14/16

Computing (n°", e)-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute clusters with k priorities in H; up to n*/*

Fi = {(u,v) | u e Cluster(v)}
end
return f = U F;

1<i<k

hops

Error amplification: (1 + e < (1+e€)fore’ =1/(2e log n)

Omitted detail: weighted graphs, use rounding technique

14/16

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

H DN

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Broadcast level

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Broadcast level

d iterations, each O(Diam + N¢) rounds where Ny = #nodes at level £
Running time: O(d - Diam + " N¢) = O(d - Diam + N)
I<d

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Broadcast level

d iterations, each O(Diam + N¢) rounds where Ny = #nodes at level £
Running time: O(d - Diam + " N¢) = O(d - Diam + N)
I<d

Computing clusters: 5(n1/k'Diam+Z | Cluster(v)|) = 5(n1/k~Diam+N1+1/k)J

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Broadcast level

iy

d iterations, each O(Diam + N¢) rounds where Ny = #nodes at level £
Running time: O(d - Diam + " N¢) = O(d - Diam + N)
I<d

Computing clusters: 5(n1/k'Diam+Z | Cluster(v)|) = 6(n1/k~Diam+N1+1/k)J

= Hop Set and approximate SSSP: O(n'/2%°" 4 Diam'°M) (N ~ v/n))

Conclusion

Main contributions:
@ Almost tight algorithm

@ Deterministic overlay network and deterministic hop set

16/16

Conclusion

Main contributions:
@ Almost tight algorithm

@ Deterministic overlay network and deterministic hop set

Open problems:
o n°M — log®M p
Better hop set?
@ Improve dependence on €

@ O(n) rounds optimal for exact SSSP?

16/16

Example: (n'/27°0) ¢)-hop set
Case 1: dist(up,v) < n'/>*/k /e

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

= n”z
..--._..
12} Vo 4

o

Example: (n'/27°0) ¢)-hop set

Case 2: dist(ug,v) > n'/**V/k/e ro = n'/2

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

1/2

EDY

0<j<i

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

J

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

1/2

EDY

0<j<i

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

J

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

= n”z

> 2
A Figr = |1+ = § i
ks € o
= 0<j<i
o0
c
‘n
I
<t
1<
c
N S . TR R R L ErE T r e S [

20 Yo Vi %] v

o 7

o

L 4

decreasing distance to v

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

J

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

>
b 2
A
S
=
o n
o0
c
‘n
I
(o)
2
1<
c
= - e, L R PP P TRI. I
20 Yo Vi V2
o 7
o

= n”z
2
Fign = (1+ = Z i
€ —
0<j<i
< n'/2pVk

k = +/logn/+/log4/e

v

decreasing distance to v

priority i + 1s. t. dist(u,u’) < dist(u,v).

S
7

For every node u of priority i and every node v, either (u,v) € H, or Au’ of J

Weight < (1 + €)dist(uy, V)

Example: (n'/27°0) ¢)-hop set
Case 2: dist(ug,v) > n'/**V/k/e

N

n

increasing priority

20 Yo Vi V2

= n”z
2
Fign = (1+ = Z i
€ —
0<j<i
< n'/2pVk

k = +/logn/+/log4/e

v

decreasing distance to v

priority i + 1s. t. dist(u,u’) < dist(u,v).

S
7

For every node u of priority i and every node v, either (u,v) € H, or Au’ of J

Weight < (1 + €)dist(uy, V)

#Edges <

n/2 = 2

k - dist(u,v) < k-n _ PRYZ

	Appendix

