
A Deterministic Almost-Tight Distributed Algorithm
for Approximating Single-Source Shortest Paths

Monika Henzinger1 Sebastian Krinninger2 Danupon Nanongkai3

1University of Vienna

2Max Planck Institute for Informatics

3KTH Royal Institute of Technology

STOC 2016

1 / 16

Introduction

The problem:
Single-source shortest paths

Undirected graphs

Positive edge weights ∈ {1, . . . ,poly (n)}

Goal: (1 + ϵ)- or (1 + o(1))-approximation (ϵ = 1/polylogn)

Distributed se�ing:
Network modeled as undirected graph

Processors can communicate with neighbors

CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

Goal: every node knows distance to source

2 / 16

Introduction

The problem:
Single-source shortest paths

Undirected graphs

Positive edge weights ∈ {1, . . . ,poly (n)}

Goal: (1 + ϵ)- or (1 + o(1))-approximation (ϵ = 1/polylogn)

Distributed se�ing:
Network modeled as undirected graph

Processors can communicate with neighbors

CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

Goal: every node knows distance to source

2 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]

O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]

1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]

1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Overview

Upper bounds:
exact O(n) det. [Bellman-Ford]
O(ϵ−1 log ϵ−1) O(n1/2+ϵ + Diam) rand. [Lenzen, Pa�-Shamir ’13]
1 + ϵ O(n1/2Diam1/4 + Diam) rand. [Nanongkai ’14]
1 + o(1) O(n1/2+o(1) + Diam1+o(1)) det. [Our result]

Lower bound: Ω(n1/2/ log n + Diam) for any reasonable approximation
[Das Sarma et al. ’11]

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation
2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic

3 / 16

Summary of Results
Theorem (CONGEST)
There is a deterministic distributed algorithm that, on any weighted undirected
network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+o(1) + D1+o(1)) rounds.

Theorem (Congested Clique)
There is a deterministic distributed algorithm that, on any weighted congested
clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in O(no(1)) rounds.

Theorem (Streaming)
There is a deterministic streaming algorithm that, given any weighted
undirected graph, computes (1 + o(1))-approximate shortest paths between a
given source node s and every other node in O(no(1) log W) passes with
O(n1+o(1) log W) space.

4 / 16

Summary of Results
Theorem (CONGEST)
There is a deterministic distributed algorithm that, on any weighted undirected
network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+o(1) + D1+o(1)) rounds.

Theorem (Congested Clique)
There is a deterministic distributed algorithm that, on any weighted congested
clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in O(no(1)) rounds.

Theorem (Streaming)
There is a deterministic streaming algorithm that, given any weighted
undirected graph, computes (1 + o(1))-approximate shortest paths between a
given source node s and every other node in O(no(1) log W) passes with
O(n1+o(1) log W) space.

4 / 16

Summary of Results
Theorem (CONGEST)
There is a deterministic distributed algorithm that, on any weighted undirected
network, computes (1 + o(1))-approximate shortest paths between a given
source node s and every other node in O(n1/2+o(1) + D1+o(1)) rounds.

Theorem (Congested Clique)
There is a deterministic distributed algorithm that, on any weighted congested
clique, computes (1 + o(1))-approximate shortest paths between a given source
node s and every other node in O(no(1)) rounds.

Theorem (Streaming)
There is a deterministic streaming algorithm that, given any weighted
undirected graph, computes (1 + o(1))-approximate shortest paths between a
given source node s and every other node in O(no(1) log W) passes with
O(n1+o(1) log W) space.

4 / 16

Computing Overlay Network

5 / 16

Overlay Network

1 Sample N = O(
√

n log n) centers (+ source s)
⇒ Every shortest path with ≥

√
n edges contains center whp

2 For every node: compute approx. shortest paths to centers within
√

n
edges in O(

√
nϵ−1) rounds (source detection [Lenzen/Peleg ’13])

3 Su�icient to solve SSSP on overlay network using hop set

6 / 16

Overlay Network

1 Sample N = O(
√

n log n) centers (+ source s)
⇒ Every shortest path with ≥

√
n edges contains center whp

2 For every node: compute approx. shortest paths to centers within
√

n
edges in O(

√
nϵ−1) rounds (source detection [Lenzen/Peleg ’13])

3 Su�icient to solve SSSP on overlay network using hop set

6 / 16

Overlay Network

1 Sample N = O(
√

n log n) centers (+ source s)
⇒ Every shortest path with ≥

√
n edges contains center whp

2 For every node: compute approx. shortest paths to centers within
√

n
edges in O(

√
nϵ−1) rounds (source detection [Lenzen/Peleg ’13])

3 Su�icient to solve SSSP on overlay network using hop set

6 / 16

Overlay Network

1 Sample N = O(
√

n log n) centers (+ source s)
⇒ Every shortest path with ≥

√
n edges contains center whp

2 For every node: compute approx. shortest paths to centers within
√

n
edges in O(

√
nϵ−1) rounds (source detection [Lenzen/Peleg ’13])

3 Su�icient to solve SSSP on overlay network using hop set
6 / 16

Derandomization

Property from randomization

O(
√

n log n) centers that hit every shortest path with ≥
√

n edges

u v

Deterministic relaxation

O(
√

nϵ−1 log n) centers that almost hit every path with ≥
√

n edges

u v

ϵd (u,v)

7 / 16

Derandomization

Property from randomization

O(
√

n log n) centers that hit every shortest path with ≥
√

n edges

u v

Deterministic relaxation

O(
√

nϵ−1 log n) centers that almost hit every path with ≥
√

n edges

u v

ϵd (u,v)

7 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs

8 / 16

Ruling sets for deterministic centers
First: Explanation for unweighted graphs

Definition
(α ,β)-ruling set R of U is a set of rulers such that

Every pair of rulers in R is at distance ≥ α from each other

Every node in U has a ruler in R at distance ≤ β

Lemma ([Goldberg et al. ’88])
A (c,c log n)-ruling set can be computed in O(c log n) rounds.

Our se�ing:
U = all nodes v with |Ball (v,

√
n) | ≥

√
n

c = ϵ
√

n

Any shortest u− v path with ≥
√

n edges: ruler in distance ≤ ϵdist (u,v)

Uniquely assign ϵ
√

n/2 nodes to every ruler⇒ |T | ≤ 2
√

n/ϵ

Crucial: “weight = #edges” in unweighted graphs
8 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes

9 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes

9 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes

9 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes

9 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes

9 / 16

Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, . . .]

Gi : round up edge weights to next multiple of ϵ2i/
√

n (∀i = 1 to log (nW))
(1+ ϵ)-approximation of shortest paths with

√
n edges and weight 2i . . . 2i+1

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”

Type t (v) of node v : minimum i such that |BallGi (v, (2 + ϵ)
√

n) | ≥ ϵ
√

n

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with
√

n edges contains a node v such that 2t (v) ≤ 2ϵw (π).

⇒ Determine centers by computing ruling set for all type classes
9 / 16

Computing Hop Set on Overlay
Network

10 / 16

Hop Sets
Definition
An (h,ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ)dist (u,v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (logO(1) n,ϵ)-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ)-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ)-hop set of size O(n) [Miller et al. ’15]
Our contribution: Fast computation of B on overlay network

11 / 16

Hop Sets
Definition
An (h,ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ)dist (u,v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (logO(1) n,ϵ)-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ)-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ)-hop set of size O(n) [Miller et al. ’15]
Our contribution: Fast computation of B on overlay network

11 / 16

Hop Sets
Definition
An (h,ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ)dist (u,v).

Application: SSSP up to small #edges can be done fast in overlay network

A: (logO(1) n,ϵ)-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ)-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ)-hop set of size O(n) [Miller et al. ’15]
Our contribution: Fast computation of B on overlay network

11 / 16

Hop Sets
Definition
An (h,ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ)dist (u,v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (logO(1) n,ϵ)-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ)-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ)-hop set of size O(n) [Miller et al. ’15]

Our contribution: Fast computation of B on overlay network

11 / 16

Hop Sets
Definition
An (h,ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ)dist (u,v).

Application: SSSP up to small #edges can be done fast in overlay network
A: (logO(1) n,ϵ)-hop set of size n1+o(1) [Cohen ’94]
B: (no(1) ,ϵ)-hop set of size n1+o(1) [Bernstein ’09]
C: (nα ,ϵ)-hop set of size O(n) [Miller et al. ’15]
Our contribution: Fast computation of B on overlay network

11 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)

Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)

Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)

Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)

Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)

Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)
Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]

With k =
√

log n/
√

log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)
Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Hop Set Based on Clusters [Thorup/Zwick ’01]

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i i� v ∈ Ai \ Ai+1

For every node u of priority i:

Cluster (v) = {u ∈ V | dist (u,v) < dist (u,Ai+1)}

pr. i + 1

pr. i

Hop set:
(u,v) ∈ F i� u ∈ Cluster (v)
w (u,v) = distG (u,v)
Guarantee: ((4/ϵ)k ,ϵ)-hop set [Bernstein ’09, Thorup/Zwick ’06]
Expected size: O(kn1+1/k) [Thorup/Zwick ’01]
With k =

√
log n/

√
log 4/ϵ : (no(1) ,ϵ)-hop set of size n1+o(1)

Derandomization: choose Ai+1 from Ai by greedy hi�ing set heuristic
(Sequential, but a�ordable in overlay network)

12 / 16

Chicken-Egg Problem?

1 Goal: Faster SSSP via hop set
2 Compute hop set by

computing clusters
3 Computing clusters at least

as hard as SSSP

⇒ Back at problem we wanted
to solve initially?

No! Iterative computation starting with

SSSP up to small #hops is cheap in overlay network

Clusters up to small #hops provide su�icient shortcu�ing to make
progress in each iteration

13 / 16

Chicken-Egg Problem?

1 Goal: Faster SSSP via hop set
2 Compute hop set by

computing clusters
3 Computing clusters at least

as hard as SSSP

⇒ Back at problem we wanted
to solve initially?

No! Iterative computation starting with

SSSP up to small #hops is cheap in overlay network

Clusters up to small #hops provide su�icient shortcu�ing to make
progress in each iteration

13 / 16

Computing (no(1),ϵ)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute clusters with k priorities in Hi up to n2/k hops
Fi = {(u,v) | u ∈ Cluster (v)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique

14 / 16

Computing (no(1),ϵ)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute clusters with k priorities in Hi up to n2/k hops
Fi = {(u,v) | u ∈ Cluster (v)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique

14 / 16

Computing (no(1),ϵ)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute clusters with k priorities in Hi up to n2/k hops
Fi = {(u,v) | u ∈ Cluster (v)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique

14 / 16

Computing (no(1),ϵ)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute clusters with k priorities in Hi up to n2/k hops
Fi = {(u,v) | u ∈ Cluster (v)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique

14 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Computing Hop Set on Overlay Network
Shortest paths from source s up to distance d :

...

Broadcast level

d iterations, each O(Diam + N`) rounds where N` = #nodes at level `
Running time: O(d · Diam +

∑
l≤d

N`) = O(d · Diam + N)

Computing clusters: Õ(n1/k ·Diam+
∑

v

|Cluster (v) |) = Õ(n1/k ·Diam+N1+1/k)

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1)) (N ≈
√

n))

15 / 16

Conclusion

Main contributions:

Almost tight algorithm

Deterministic overlay network and deterministic hop set

Open problems:
no(1) → logO(1) n
Be�er hop set?

Improve dependence on ϵ

O(n) rounds optimal for exact SSSP?

16 / 16

Conclusion

Main contributions:

Almost tight algorithm

Deterministic overlay network and deterministic hop set

Open problems:
no(1) → logO(1) n
Be�er hop set?

Improve dependence on ϵ

O(n) rounds optimal for exact SSSP?

16 / 16

Example: (n1/2+o(1),ϵ)-hop set
Case 1: dist (u0,v) ≤ n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2

v

r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2

v

r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0

v1 v2

v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0

v1 v2

v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1

v2

v
r0

r0

r1

r1

r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2 v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2 v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2 v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

Example: (n1/2+o(1),ϵ)-hop set
Case 2: dist (u0,v) > n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2 v
r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v).

Weight ≤ (1 + ϵ)dist (u0,v)

#Edges ≤
k · dist (u,v)

n1/2
≤

k · n
n1/2

= kn1/2

1 / 1

	Appendix

