PS Complexity of Polynomial-Time Problems

https://www.cosy.sbg.ac.at/~sk/courses/polycomp/

Exercise sheet 1

Due: Sunday, October 29, 2017

Total points : 40

Prove all your claims!

Reminder: In the lecture we have introduced the *Orthogonal Vectors Hypothesis*:

OVH: Given two sets $A, B \subseteq \{0, 1\}^d$ such that |A| = |B| = n, there is no algorithm running in time $O(n^{2-\epsilon} \cdot \text{poly}(d))$ (for any constant $\epsilon > 0$) which decides whether there exist $a \in A$ and $b \in B$ such that a and b are orthogonal.

Exercise 1 (10 points)

Consider the following variant **OVH**' of **OVH**:

OVH': Given a set $A \subseteq \{0, 1\}^d$ such that |A| = n, there is no algorithm running in time $O(n^{2-\epsilon} \cdot \text{poly}(d))$ (for any constant $\epsilon > 0$) which decides whether there exist $a, a' \in A$ such that a and a' are orthogonal.

Show that **OVH** and **OVH** are equivalent.

Exercise 2 (10 points)

Design an algorithm for the orthogonal vectors problem with running time $O(2^d n d)$.

Exercise 3 (10 points)

Given two sets $A, B \subseteq \{0, 1\}^d$ such that |A| = |B| = n, construct a Boolean formula φ of size O(nd) such that φ is satisfiable if and only if there exist $a \in A$ and $b \in B$ such that a and b are orthogonal.

Exercise 4 (10 points)

Consider the **Max Inner Product** problem: Given two sets $A, B \subseteq \mathbb{Z}^d$ such that |A| = |B| = n, find the value of the maximum inner product between any vector *a* from *A* and *b* from *B*, i.e, compute the quantity $\max_{a \in A, b \in B} \langle a, b \rangle$. Show that, assuming **OVH**, there is no algorithm for **Max Inner Product** with running time $O(n^{2-\epsilon} \cdot \text{poly}(d))$ for any constant $\epsilon > 0$.