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Cuts and Cut Sparsification1

Weight of cut: wG (C )
Weight of sparsified cut wH(C )
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Cuts and Cut Sparsification

Definition

A (reweighted) subgraph H ⊆ G is a (1± ε)-cut sparsifier for a weighted
graph G

if for every cut C

(1− ε)wG (C ) ≤ wH(C ) ≤ (1 + ε)wG (C ).
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Cuts and Cut Sparsification

Definition

A (reweighted) subgraph H ⊆ G is a (1± ε)-cut sparsifier for a weighted
graph G if for every cut C

(1− ε)wG (C ) ≤ wH(C ) ≤ (1 + ε)wG (C ).

Goal: |H| = O(n log n/ε2)

Lower bound: O(n/ε2) [ACK+16]

Algorithm concerning cuts: T (m, n)→ T (O(n log n/ε2), n)

Want size, time, and above property with high probability: 1− n−c
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Sparsification by Random Sampling

Include edge e with probability pe , if sampled: we ← we/pe .

Size:
∑

e pe

E.g. pe = 1/m =⇒ size
∑

e 1/m = 1

Cut sparsifier in expectation

Want with high probability: 1− n−c
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Connectivity

Idea: sample e = (u, v) relative to connectivity ce of u and v

: the
minimum cut separating u and v

u

v

e
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Connectivity = 1

Idea: sample e = (u, v) relative to its connectivity ce : the minimum cut
separating u and v

u ve

Sample with probability pe
Success with probability ≤ pe
pe ≥ 1− n−c
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Connectivity � 1

Idea: sample e = (u, v) relative to connectivity ce of u and v : the
minimum cut separating u and v

u

v

e

Sample with probability

pe = min

{
1,

c · log n

ce

}
At least ce edges e ′ crossing min cut C
with ce′ ≤ ce , hence pe′ ≥ pe
There is an edge crossing C in H with
probability at least

1−
∏
e′∈C

(1− pe′)

≥ 1−
(

1− c · log n

ce

)ce

≥ 1− e−c·log n = 1− n−c
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Sparsification by Random Sampling

Unweighted:

Include edge e with probability pe , if sampled: we ← we/pe .

Size:
∑

e pe

Weighted:

Sample re from Binom(we , pe)

If re > 0, include e with: we ← re/pe

Size
∑

e wepe :

P[re > 0] =

∑
k≥1

P[re = k] ≤
∑
k≥1

kP[re = k] = E[re ] = wepe
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Connectivity Estimators λe

Sample with pe ∼ cγ·log n
λeε2 , for some λe ≤ ce

Size Time

[FHHP11] Edge Connectivity

[Kar99] Minimum Cut
[BK96] Strong Connectivity

O(n log n/ε2) O(m log2 n)

[SS11] Conductance
[FHHP11] Nagamochi-Ibaraki Indices

O(n log2 n/ε2) O(m)

new Maximum Spanning Forest Indices

O(n log n/ε2) O(mα(n) log(m/n))

For graphs with polynomially bounded integer weights.
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Maximum Spanning Forest Indices

Definition

F = {F1, . . . ,FM} is an M-partial maximum spanning forest packing of G
if for all i = 1, . . . ,M, Fi is a maximum spanning forest in G \

⋃i−1
j=1 Fj .

MSF index of e, denoted fe , is the unique index such that e ∈ Ffe .

u

x

v

y

fe = 1
fe = 2
fe = 3
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MSF Indices and Connectivity

Claim

The connectivity of e is at least fe · we

Proof. Denote e = (u, v). For i = 1, . . . , fe , there is a path in Fi from u to
v with each edge of weight at least we .

u

x

v

y

4
6

3 2

1

2 fe = 1
fe = 2
fe = 3
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y
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Computing M-Partial MSF Indices

Peeling off M forests is too slow: takes O(Mm) time

Instead:
1 Sort edges according to weight
2 Put each edge in first available forest

u

x

v

y

4
6

3 2

1

2
1 Sorted edges:

uv , ux , xv , uy , vy , xy
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Computing M-Partial MSF Indices

Peeling off M forests is too slow: takes O(Mm) time

Instead:
1 Sort edges according to weight
2 Put each edge in first available forest

Takes time O(mα(n) logM)

1 Radix sort in O(m) time
2 F Pay logM for binary search for first available forest

F Pay α(n) for maintaining Union-Find data structures
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1 Sorted edges:

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs December 1, 2021 14 / 17



Computing M-Partial MSF Indices

Peeling off M forests is too slow: takes O(Mm) time

Instead:
1 Sort edges according to weight
2 Put each edge in first available forest

Takes time O(mα(n) logM)
1 Radix sort in O(m) time

2 F Pay logM for binary search for first available forest
F Pay α(n) for maintaining Union-Find data structures

u

x

v

y

1 Sorted edges:

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs December 1, 2021 14 / 17



Computing M-Partial MSF Indices

Peeling off M forests is too slow: takes O(Mm) time

Instead:
1 Sort edges according to weight
2 Put each edge in first available forest

Takes time O(mα(n) logM)
1 Radix sort in O(m) time
2 F Pay logM for binary search for first available forest

F Pay α(n) for maintaining Union-Find data structures

u

x

v

y

1 Sorted edges:

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs December 1, 2021 14 / 17



Naive Sparsification2

1 Compute MSF indices upto M = n in time O(mα(n) log n).

2 Sample with pe ∼ cγ·log n
fe ·weε2 .

Results in size

∑
e

wepe =
c · log n

ε2

∑
e

1/fe

≤ cn log n

ε2

m/n∑
i=1

1/i ≤ cn · log n

ε2
log(m/n)

Goal is time O(mα(n) log(m/n)) and size O(n log n/ε2).

2Companion report
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Fancy Sparsification3

1 ρ← Θ(log n/ε2)

2 Compute ρ-partial MSF packing, add those edges to F0

3 For i = 0 to iend:

1 Sample remaining edges with probability 1/2
2 If sampled we ← 2we

3 ki ← ρ · 2i+1

4 Compute ki -partial MSF packing, add those edges to Fi

4 Sample edges e ∈ Fj with pe ∼ 1/(2jwe)

Time: O(mα(n) log(m/n))
Size: O(n log n/ε2 log(m/(n log(n)/ε2))) → O(n log n/ε2)

3Based on [FHHP11] for unweighted graphs
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Conclusion

Theorem

G = (V ,E ) polynomial weighted, M > 0. There exists an algorithm that
computes an M-partial MSF packing in O(mα(n) logM) time.

Theorem

G = (V ,E ) weighted, ε > 0. There exists an algorithm that computes a
(1± ε)-cut sparsifier for G with high probability, in time
O(mα(n) log(m/n)) and with size is O

(
n log n/ε2

)
.
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