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Cuts and Cut Sparsification?

'Image based on slides by Sebastian Forster
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Cuts and Cut Sparsification?

Weight of cut: wg(C)
Weight of sparsified cut wy(C)
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Cuts and Cut Sparsification

Definition
A (reweighted) subgraph H C G is a (1 =+ ¢)-cut sparsifier for a weighted
graph G
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Cuts and Cut Sparsification

Definition
A (reweighted) subgraph H C G is a (1 + ¢)-cut sparsifier for a weighted
graph G if for every cut C

(1 - e)ws(C) < wi(C) < (1 + )wg(C).
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Cuts and Cut Sparsification

Definition
A (reweighted) subgraph H C G is a (1 =+ €)-cut sparsifier for a weighted
graph G if for every cut C

(1 - e)wg(C) < wi(C) < (1 + )wg(C).

e Goal: |H| = O(nlogn/e?)
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Cuts and Cut Sparsification

Definition
A (reweighted) subgraph H C G is a (1 =+ €)-cut sparsifier for a weighted
graph G if for every cut C

(1 - e)wg(C) < wi(C) < (1 + )wg(C).

e Goal: |H| = O(nlogn/e?)
o Lower bound: O(n/e?) [ACKT16]
e Algorithm concerning cuts: T(m, n) — T(O(nlogn/€?), n)

c

@ Want size, time, and above property with high probability: 1 — n~
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Sparsification by Random Sampling

@ Include edge e with probability pe, if sampled: we < we/pe.
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Sparsification by Random Sampling

@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe
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Sparsification by Random Sampling

@ Include edge e with probability pe, if sampled: we < we/pe.

o Size: ), pe
e Eg pe=1/m = size) 1/m=1
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Sparsification by Random Sampling

Include edge e with probability pe, if sampled: we  we/pe.

Size: )", pe
Eg pe=1/m = size)  1/m=1

Cut sparsifier in expectation
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Sparsification by Random Sampling

Include edge e with probability pe, if sampled: we  we/pe.

Size: )", pe
Eg pe=1/m = size)  1/m=1

Cut sparsifier in expectation
Want with high probability: 1 — n=¢
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Connectivity

Idea: sample e = (u, v) relative to connectivity c. of u and v
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Connectivity

Idea: sample e = (u, v) relative to connectivity c. of u and v: the
minimum cut separating u and v
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Connectivity = 1

Idea: sample e = (u, v) relative to its connectivity ce: the minimum cut
separating v and v
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Connectivity = 1

Idea: sample e = (u, v) relative to its connectivity ce: the minimum cut
separating v and v

Sample with probability pe
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Connectivity = 1

Idea: sample e = (u, v) relative to its connectivity ce: the minimum cut
separating v and v

Sample with probability pe
Success with probability < pe
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Connectivity = 1

Idea: sample e = (u, v) relative to its connectivity ce: the minimum cut
separating v and v

Sample with probability pe
Success with probability < pe
pe>1—-n"¢
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Connectivity > 1

|dea: sample e = (u, v) relative to connectivity c. of u and v: the
minimum cut separating v and v
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Connectivity > 1

|dea: sample e = (u, v) relative to connectivity c. of u and v: the

minimum cut separating v and v
Sample with probability

. { c-Iogn}
Pe =min< 1l ———
Ce
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Connectivity > 1

|dea: sample e = (u, v) relative to connectivity c. of u and v: the

minimum cut separating v and v
Sample with probability

. { c-Iogn}
Pe =min< 1l ———
Ce

At least c. edges € crossing min cut C
with ¢ < ¢e
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Connectivity > 1

|dea: sample e = (u, v) relative to connectivity c. of u and v: the

minimum cut separating v and v
Sample with probability

. { c-Iogn}
Pe =min< 1l ———
Ce

At least c. edges €’ crossing min cut C
with cos < ce, hence per > pe

There is an edge crossing C in H with
probability at least

1- H(l_pe’)

e'eC
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Connectivity > 1

|dea: sample e = (u, v) relative to connectivity c. of u and v: the

minimum cut separating v and v
Sample with probability

. { c-Iogn}
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At least c. edges €’ crossing min cut C
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There is an edge crossing C in H with
probability at least

. Ce
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Sparsification by Random Sampling

Unweighted:

@ Include edge e with probability pe, if sampled: we < we/pe.

o Size: ), pe
Weighted:
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Sparsification by Random Sampling

Unweighted:

@ Include edge e with probability pe, if sampled: we < we/pe.

o Size: ), pe
Weighted:

e Sample re from Binom(we, pe)
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Sparsification by Random Sampling

Unweighted:
@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe

Weighted:
e Sample re from Binom(we, pe)

o If re >0, include e with: we < re/pe
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Sparsification by Random Sampling

Unweighted:
@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe
Weighted:
e Sample re from Binom(we, pe)
o If re >0, include e with: we < re/pe
o Size ) Wepe:
Plre > 0] =
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Sparsification by Random Sampling

Unweighted:
@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe
Weighted:
e Sample re from Binom(we, pe)
o If re >0, include e with: we < re/pe
o Size ) Wepe:
Plre > 0] = Y Plr. = K]

k>1
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Sparsification by Random Sampling

Unweighted:
@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe
Weighted:
e Sample re from Binom(we, pe)
o If re >0, include e with: we < re/pe
o Size ) Wepe:
Plre > 0] = Y Plre =k <> KkP[r. = K]

k>1 k>1
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Sparsification by Random Sampling

Unweighted:
@ Include edge e with probability pe, if sampled: we < we/pe.
o Size: ), pe
Weighted:
e Sample re from Binom(we, pe)
o If re >0, include e with: we < re/pe
o Size ) Wepe:

Plre > 0] = Y Plre = k] < KkP[re = k] = E[re] = wepe
k>1 k>1
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Connectivity Estimators A\

Sample with pe ~ M for some \e < ce

[FHHP11] Edge Connectivity

For graphs with polynomially bounded integer weights.
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Connectivity Estimators A\

Sample with pe ~ M for some \e < ce

[FHHP11] Edge Connectivity
[Kar99] Minimum Cut
[BK96] Strong Connectivity
[SS11] Conductance
[FHHP11] Nagamochi-lbaraki Indices
new Maximum Spanning Forest Indices

For graphs with polynomially bounded integer weights.

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs| December 1, 2021 11/17
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Sample with pe ~ M for some \e < ce

[FHHP11] Edge Connectivity
[Kar99] Minimum Cut
[BK96] Strong Connectivity
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new MSF Indices

For graphs with polynomially bounded integer weights.
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Connectivity Estimators A\

Sample with pe ~ M for some \e < ce

[FHHP11]
[Kar99]
[BK96]
[5S11]
[FHHP11]
new

Size Time
Edge Connectivity
Minimum Cut
Strong Connectivity O(nlogn/e?)  O(mlog? n)
Conductance
NI Indices O(nlog®n/e?)  O(m)
MSF Indices

For graphs with polynomially bounded integer weights.
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Connectivity Estimators A\

Sample with pe ~ M for some \e < ce

Size Time
[FHHP11] Edge Connectivity
[Kar99] Minimum Cut
[BK96] Strong Connectivity O(nlogn/e?)  O(mlog? n)
[SS11] Conductance
[FHHP11] NI Indices O(nlog®n/e?)  O(m)
new MSF Indices O(nlogn/e?)  O(ma(n)log(m/n))

For graphs with polynomially bounded integer weights.
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Maximum Spanning Forest Indices

Definition

F ={F1,...,Fm} is an M-partial maximum spanning forest packing of G
if forall i=1,...,M, F; is a maximum spanning forest in G\ UJ'-:I Fi
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Maximum Spanning Forest Indices

Definition

F ={F1,...,Fm} is an M-partial maximum spanning forest packing of G
if forall i=1,...,M, F; is a maximum spanning forest in G\ UJ'-:I F;.
MSF index of e, denoted fe, is the unique index such that e € Fr..
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Maximum Spanning Forest Indices

Definition

F ={F1,...,Fm} is an M-partial maximum spanning forest packing of G
if forall i =1,..., M, F; is a maximum spanning forest in G \ Uj’;i 5
MSF index of e, denoted fe, is the unique index such that e € Fr..

oh oh
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Maximum Spanning Forest Indices

Definition

F ={F1,...,Fm} is an M-partial maximum spanning forest packing of G
if forall i =1,..., M, F; is a maximum spanning forest in G \ Uj’;i 5
MSF index of e, denoted fe, is the unique index such that e € Fr..

u
2 fo=1
4 fe:2
fo=3
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MSF Indices and Connectivity

Claim J

The connectivity of e is at least fe - we
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MSF Indices and Connectivity

Claim

The connectivity of e is at least f, - we J

Proof. Denote e = (u,v). For i =1,...,f, there is a path in F; from u to
v with each edge of weight at least we. O
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MSF Indices and Connectivity

Claim
The connectivity of e is at least f, - we J
Proof. Denote e = (u,v). For i =1,...,f, there is a path in F; from u to
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time

@ Instead:

@ Sort edges according to weight
@ Put each edge in first available forest
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time
@ Instead:

@ Sort edges according to weight
© Put each edge in first available forest

u

© Sorted edges:

. UV, UX, XV, Uy, VY, Xy
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time
o Instead:

© Sort edges according to weight
@ Put each edge in first available forest

o Takes time O(ma(n)log M)
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time
o Instead:

© Sort edges according to weight
@ Put each edge in first available forest

o Takes time O(ma(n)log M)
@ Radix sort in O(m) time
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Computing M-Partial MSF Indices

o Peeling off M forests is too slow: takes O(Mm) time
@ Instead:

© Sort edges according to weight

@ Put each edge in first available forest
o Takes time O(ma(n)log M)

@ Radix sort in O(m) time
@  * Pay log M for binary search for first available forest
* Pay a(n) for maintaining Union-Find data structures
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Naive Sparsification?

© Compute MSF indices upto M = n in time O(ma(n)log n).

cy-logn
fe-Wee? -

@ Sample with pe ~

2Companion report
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Naive Sparsification?

© Compute MSF indices upto M = n in time O(ma(n) log n).

cy-logn
fe-Wee? -

@ Sample with pe ~

Results in size

ZWepe_ IognZ]_/fe

e

2Companion report
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Naive Sparsification?

© Compute MSF indices upto M = n in time O(ma(n) log n).

cy-logn
fe-Wee? -

@ Sample with pe ~

Results in size

m/n
ZWepe— Iognzl/f<cnlognzl/l_

e i=1

2Companion report
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Naive Sparsification?

© Compute MSF indices upto M = n in time O(ma(n) log n).

cy-logn
fe-Wee? -

@ Sample with pe ~

Results in size

m/n
-logn cnlogn cn-logn
E Wepe— g E 1/fe < —— g E 1/i <—glog(m/)

e i=1

2Companion report
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Naive Sparsification?

© Compute MSF indices upto M = n in time O(ma(n) log n).

cy-logn
fe-Wee? -

@ Sample with pe ~

Results in size

m/n
-logn cnlogn cn-logn
E Wepe— g E 1/fe < —— g Zl/ <—glog(m/)

e i=1

Goal is time O(ma(n)log(m/n)) and size O(nlog n/e?).

2Companion report
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Fancy Sparsification®

@ p « 9(logn/e?)

3Based on [FHHP11] for unweighted graphs
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Fancy Sparsification®

Q@ p <+ O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy

3Based on [FHHP11] for unweighted graphs

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs| December 1, 2021 16 /17



Fancy Sparsification®

Q@ p <+ O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to iepg:

3Based on [FHHP11] for unweighted graphs
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Fancy Sparsification®

Q@ p + O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to iepg:

©® Sample remaining edges with probability 1/2

3Based on [FHHP11] for unweighted graphs
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Fancy Sparsification®

@ p « O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to iepg:

©® Sample remaining edges with probability 1/2

@ If sampled w, <+ 2w,

3Based on [FHHP11] for unweighted graphs
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Fancy Sparsification®

Q@ p + O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
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Fancy Sparsification®
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@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to iepg:

©® Sample remaining edges with probability 1/2

@ If sampled w, <+ 2w,

o ki —p- 2i+1

@ Compute k;-partial MSF packing, add those edges to F;
@ Sample edges e € Fj with pe ~ 1/(2 we)

Time: O(ma(n)log(m/n))

3Based on [FHHP11] for unweighted graphs

Tijn de Vos (University of Salzburg) Faster Cut Sparsification of Weighted Graphs| December 1, 2021 16 /17



Fancy Sparsification®

Q@ p + O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to jeng:

©® Sample remaining edges with probability 1/2
@ If sampled w, <+ 2w,
@ ki+p- 2i+1

@ Compute k;-partial MSF packing, add those edges to F;
@ Sample edges e € Fj with pe ~ 1/(2 we)

Time: O(ma(n)log(m/n))
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Fancy Sparsification®

Q@ p + O(logn/e?)
@ Compute p-partial MSF packing, add those edges to Fy
© For i =0 to ipng:

©® Sample remaining edges with probability 1/2
@ If sampled w, <+ 2w,
@ ki+p- 2i+1

@ Compute k;-partial MSF packing, add those edges to F;
@ Sample edges e € Fj with pe ~ 1/(2 we)

Time: O(ma(n)log(m/n))
Size: O(nlogn/e?log(m/(nlog(n)/e?))) — O(nlogn/e?)
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Conclusion

Theorem

G = (V, E) polynomial weighted, M > 0. There exists an algorithm that
computes an M-partial MSF packing in O(ma(n) log M) time.
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Conclusion

Theorem

G = (V, E) polynomial weighted, M > 0. There exists an algorithm that
computes an M-partial MSF packing in O(ma(n) log M) time.

Theorem

G = (V, E) weighted, € > 0. There exists an algorithm that computes a
(1 +£ €)-cut sparsifier for G with high probability, in time
O(ma(n) log(m/n)) and with size is O(nlog n/e?).
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