Simple label-correcting algorithms for partially dynamic approximate shortest paths in directed graphs Adam Karczmarz, Jakub Łacki

Mara Grilnberger

University of Salzburg Department of Computer Science

Setting

- maintaining (approximate) shortest paths in weighted, directed graph
 G where weights are non-negative
- partially dynamic setting
- incremental setting:
 - edge can be inserted
 - weight of an edge can decrease
- decremental Setting:
 - edge deletions
 - weight of an edge can increase

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting
- best deterministic algorithm (dense graphs): using King's decremental transitive closure algorithm: \rightarrow graphs G^{2^i} contain edge uv: path u to v in G with $\leq 2^i$ hops \rightarrow h-SSSP algorithm (Bernstein) to maintain approximate distances
- $O(n^3 \log^3 n \log(nW)/\epsilon + \Delta)$ total update time $O(n^2 \log n \log(nW))$ space

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting
- best deterministic algorithm (dense graphs): using King's decremental transitive closure algorithm: \rightarrow graphs G^{2^i} contain edge uv: path u to v in G with $\leq 2^i$ hops \rightarrow h-SSSP algorithm (Bernstein) to maintain approximate distances
- $O(n^3 \log^3 n \log(nW)/\epsilon + \Delta)$ total update time $O(n^2 \log n \log(nW))$ space
- this paper: $O(n^3 \log n \log(nW)/\epsilon + \Delta)$ additional space: $O(n^2)$

ullet shortest path algorithms maintain distance estimates $\mathrm{d}:V o\mathbb{R}$ and relaxing edges/vertices

ullet shortest path algorithms maintain distance estimates $\mathrm{d}:V o\mathbb{R}$ and relaxing edges/vertices

edge relaxation

A weighted edge uv is called relaxed, if $d(v) \leq d(u) + w(uv)$ where w(uv) is the weight of edge uv, and tense otherwise.

ullet shortest path algorithms maintain distance estimates $\mathrm{d}:V o\mathbb{R}$ and relaxing edges/vertices

edge relaxation

A weighted edge uv is called relaxed, if $d(v) \le d(u) + w(uv)$ where w(uv) is the weight of edge uv, and tense otherwise.

- relaxing a tense edge: set d(v) = d(u) + w(uv)
- also works in incremental setting

ullet shortest path algorithms maintain distance estimates $\mathrm{d}:V o\mathbb{R}$ and relaxing edges/vertices

edge relaxation

A weighted edge uv is called relaxed, if $d(v) \le d(u) + w(uv)$ where w(uv) is the weight of edge uv, and tense otherwise.

- relaxing a tense edge: set d(v) = d(u) + w(uv)
- also works in incremental setting
- decremental setting:

vertex relaxation

A vertex v is called relaxed, if $d(v) < \min_{uv \in E(G)} \{d(u) + w(uv)\}$ and we set $d(v) := \min_{uv \in E(G)} \{d(u) + w(uv)\}$

Approximate APSP - Idea

- ullet each pair of vertices: maintain distance estimate $\mathrm{d}(u,v)$
- ullet distance estimates: $(1+\epsilon)$ approximations of real distance
- relaxation operation:
 - compute t(u, v): estimated length of shortest path from u to v
 - ullet set distance estimate to $\mathrm{t}(\mathit{u},\mathit{v})$

Approximate APSP - Idea

- ullet each pair of vertices: maintain distance estimate $\mathrm{d}(u,v)$
- ullet distance estimates: $(1+\epsilon)$ approximations of real distance
- relaxation operation:
 - compute t(u, v): estimated length of shortest path from u to v
 - ullet set distance estimate to $\mathrm{t}(u,v)$
- when distance estimate increases
 - ullet check all possibly affected distance estimates $\mathrm{d}(w,z)$
 - increase them if d(w, z) < t(w, z)

 $\bullet \ M_{u,v} = \{ \operatorname{d}(u,z) + \operatorname{d}(z,v) : z \in V \setminus \{u,v\} \}$

$$\operatorname{t}(u,v) := \operatorname{r}_{1+\epsilon}(\min(M_{u,v},\operatorname{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

 $\bullet \ M_{u,v} = \{ \operatorname{d}(u,z) + \operatorname{d}(z,v) : z \in V \setminus \{u,v\} \}$

$$t(u,v) := r_{1+\epsilon}(\min(M_{u,v}, w(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

• $M_{u,v} = \{d(u,z) + d(z,v) : z \in V \setminus \{u,v\}\}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$

• $M_{u,v} = \{d(u,z) + d(z,v) : z \in V \setminus \{u,v\}\}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$

$$t(v, w) = r_{1+\epsilon}(2) = (1+\epsilon)^{j}$$

• $M_{u,v} = \{d(u,z) + d(z,v) : z \in V \setminus \{u,v\}\}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$
$$w(sv) = 3$$

 $\bullet \ M_{u,v} = \{ \operatorname{d}(u,z) + \operatorname{d}(z,v) : z \in V \setminus \{u,v\} \}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$

$$w(sv) = 3$$

$$M_{s,v} = \{(1+1), \infty\}$$

• $M_{u,v} = \{d(u,z) + d(z,v) : z \in V \setminus \{u,v\}\}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$

$$w(sv) = 3$$

$$M_{s,v} = \{(1+1), \infty\}$$

$$t(s, v) = r_{1+\epsilon}(2)$$

• $M_{u,v} = \{d(u,z) + d(z,v) : z \in V \setminus \{u,v\}\}$

$$\mathrm{t}(u,v) := \mathrm{r}_{1+\epsilon}(\min(M_{u,v},\mathrm{w}(uv)))$$

where:

$$r_{1+\epsilon}(x) = (1+\epsilon)^{\lceil \log_{1+\epsilon} x \rceil}$$

$$t(u, v) = r_{1+\epsilon}(1) = 1$$

$$w(sv) = 3$$

$$M_{s,v} = \{(1+1), \infty\}$$

$$t(s, v) = r_{1+\epsilon}(2) = (1+\epsilon)^{j}$$

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	w
_		1	(2)	
S	0	1	r(2)	r(2r(2))
u	∞	0	1	r(r(2) + 1)
V	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	w
S	0	1	r(2)	r(2r(2))
u	∞	0	1	r(r(2) + 1)
V	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - $\begin{tabular}{ll} \bullet & \mbox{For every } y \in V \setminus \{u,v\}: \\ \mbox{Update}(y,v) & \mbox{and Update}(u,y) \end{tabular}$

	S	u	V	w
S	0	1	r(2)	r(2r(2))
u	∞	0	1	r(r(2) + 1)
٧	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - $\begin{tabular}{ll} \bullet & \mbox{For every } y \in V \setminus \{u,v\}: \\ \mbox{Update}(y,v) & \mbox{and Update}(u,y) \end{tabular}$

	S	u	V	w
S	0	1	r(2)	r(2r(2))
u	∞	0	r(3)	r(r(2) + 1)
V	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	w
S	0	1	r(3)	r(2r(2))
u	∞	0	r(3)	r(r(2) + 1)
V	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	w
S	0	1	r(3)	r(2r(2))
u	∞	0	r(3)	r(r(2) + 1)
V	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	W
S	0	1	r(3)	r(2r(2))
u	∞	0	r(3)	r(r(2) + r(3))
٧	∞	∞	0	r(2)
W	∞	∞	∞	0

- Calculate t(u, v)
- If distance estimate $d(u, v) \neq t(u, v)$: update it
 - For every $y \in V \setminus \{u, v\}$: Update(y, v) and Update(u, y)

	S	u	V	w
S	0	1	r(3)	r(r(2) + r(3))
u	∞	0	r(3)	r(r(2) + r(3))
٧	∞	∞	0	r(2)
W	∞	∞	∞	0

Approximate APSP

- Eventually no distance estimate left to update
- invariant: $\mathrm{d}(u,v) \leq \mathrm{t}(u,v)$ at all times and $d(u,v) = \mathrm{t}(u,v)$ after Update procedure stops
- ullet weights only increase or edges deleted: $\mathrm{t}(u,v)$ can only become larger or stay the same
- when d(u, v) is not (yet) reset: $d(u, v) \le t(u, v)$ Update(u,v) sets d(u, v) to t(u, v)
- path from y to v contains path $u \to v$, d(y,v) is also updated and set to t(y,v)Similar for a path that begins with $u \to v$

Approximation

Repeated use of $r_{1+\epsilon}$: not a $(1+\epsilon)$ -approximation Specifically:

Lemma 1

Let G be a non-negatively weighted directed graph.

If $d: V \times V \to \mathbb{R} \cup \{\infty\}$ satisfies the following:

Then for any $u, v \in V$ and any integer $h \ge 0$, we have $\delta_G(u, v) \le \mathrm{d}(u, v) \le (1 + \epsilon)^{\lceil \log_2 h \rceil + 1} \delta_G^h(u, v)$

where $\delta_G^h(u,v)$ is the length of the shortest path from u to v with at most h edges

For: $\delta_G(u,v) \leq \mathrm{d}(u,v)$ and $\mathrm{t}(u,v)$ cannot underestimate the actual distance

For $d(u, v) < \infty$

- ullet $\mathrm{d}(\mathit{u},\mathit{v}) = \mathrm{r}_{1+\epsilon}(\mathrm{w}(\mathit{u}\mathit{v}))
 ightarrow \mathrm{edge} \; \mathit{u}\mathit{v} \; \mathrm{is \; in \; G}$
- ullet $\mathrm{d}(u,v)=\mathrm{r}_{1+\epsilon}(\mathrm{d}(u,w)+\mathrm{d}(w,v))$ for some w
 - \rightarrow path P_1 from u to w, P_2 from w to v
 - \rightarrow eventually break down into edges
 - \rightarrow rounding only makes the values larger

For: $\delta_{\mathcal{G}}(u,v) \leq \mathrm{d}(u,v)$ $\mathrm{d}(u,v) = \mathrm{t}(u,v)$ and $\mathrm{t}(u,v)$ cannot underestimate the actual distance

Show that: $d(u, v) \leq (1 + \epsilon)^{\lceil \log_2 h \rceil + 1} \delta_G^h(u, v)$ by induction on h Assume: $\delta_G^h(u, v) \leq \infty$

h = 1:

Edge uv is in G and therefore $\delta^h_G(u,v) \leq w(uv)$

By definition of t(u, v) and (2) we have that:

$$d(u, v) \le r_{1+\epsilon}(w(uv)) \le (1+\epsilon)w(uv)$$

= $(1+\epsilon)^{\lceil \log_2 h \rceil + 1} \delta_G^h(u, v)$

Show that: $\mathrm{d}(u,v) \leq (1+\epsilon)^{\lceil \log_2 h \rceil + 1} \delta_G^h(u,v)$ by induction on h Assume: $\delta_G^h(u,v) \leq \infty$

 $h \geq 2$:

Path Q with h edges:

By IH we get:

$$d(u, w) \leq (1 + \epsilon)^{\lceil \log_2 \lceil h/2 \rceil \rceil + 1} \delta_G^{\lceil h/2 \rceil}(u, v)$$

$$\leq (1 + \epsilon)^{\lceil \log_2 \lceil h/2 \rceil \rceil + 1} \operatorname{length}(Q_1)$$

Since h > 2:

$$\begin{split} \mathrm{d}(u,w) + \mathrm{d}(w,v) &\leq (1+\epsilon)^{\lceil \log_2 h/2 \rceil + 1} (\mathrm{length}(Q_1) + \mathrm{length}(Q_2)) \\ &\leq (1+\epsilon)^{\lceil \log_2 h \rceil} \, \mathrm{length}(Q) \end{split}$$

Also:

$$d(u, v) \le r_{1+\epsilon}(d(u, w) + d(w, v))$$

$$\le (1+\epsilon)(d(u, w) + d(w, v))$$

$$\le (1+\epsilon)^{\lceil \log_2 h \rceil + 1} \operatorname{length}(Q)$$

Also holds for shortest path with at most h edges between u and v.

$$d(u, v) \le (1 + \epsilon)^{\lceil \log_2 h \rceil + 1} \delta_G^h(u, v)$$

$(1+\epsilon)$ - Approximation

Approximation depends on the number of hops $h \leq n$ we allow.

To get $(1 + \epsilon)$ -approximation:

Let
$$\epsilon' = \frac{\epsilon}{2\lceil (\log_2 n) \rceil}$$

$$\left(1 + \frac{\epsilon}{2\lceil(\log_2 n)\rceil}\right)^{\lceil\log_2 n\rceil + 1} \le e^{\epsilon/2}$$

and since $\epsilon \in (0,1)$

$$\leq 1 + \epsilon$$

Recomputing $\mathrm{t}(u,v)$ every time a distance between two vertices might have changed \to Not very efficient!

- Instead: store an approximation $\mathrm{t}'(u,v)$ along with an index $\beta(u,v)$
 - remember first index *i* for which:

• order vertices $w_1, ..., w_n$ in some way

$$\mathbf{r}_{1+\epsilon}(\mathbf{d}(u,w_i)+\mathbf{d}(w_i,v))=\mathbf{t}'(u,v)$$

- reevaluating t'(u, v):
 - ullet if $\mathrm{r}_{1+\epsilon}(\mathrm{w}(\mathit{uv}))=\mathrm{t}'(\mathit{u},\mathit{v}) o\mathrm{t}'(\mathit{u},\mathit{v})$ stays the same
 - look for alternative path that lets us keep distance t'(u, v): Only need to look at indices $j \ge \beta(u, v)$
 - \bullet if estimated length of shortest path actually changed: recompute $\mathbf{t}'(u,v)$

How often can d(u, v) change?

- for a $d(u, v) < \infty$: $d(u, v) \le t(u, v) < (1 + \epsilon')^{\lceil \log_2 n \rceil + 2} nW$
- d(u, v) can only increase
- ullet $\mathrm{d}(\mathit{u},\mathit{v})$ always non-negative integral power of $(1+\epsilon')$

How often can d(u, v) change?

- for a $d(u, v) < \infty$: $d(u, v) \le t(u, v) < (1 + \epsilon')^{\lceil \log_2 n \rceil + 2} nW$
- d(u, v) can only increase
- \bullet d(u, v) always non-negative integral power of $(1 + \epsilon')$
- changes:

$$O\left(\log_{1+\epsilon'}\left(1+\epsilon'\right)^{\log_2 n} nW\right) = O(\log(nW)/\epsilon')$$

How often can d(u, v) change?

- for a $d(u, v) < \infty$: $d(u, v) \le t(u, v) < (1 + \epsilon')^{\lceil \log_2 n \rceil + 2} nW$
- d(u, v) can only increase
- \bullet d(u, v) always non-negative integral power of $(1 + \epsilon')$
- changes:

$$O\left(\log_{1+\epsilon'}\left(1+\epsilon'\right)^{\log_2 n} nW\right) = O(\log(nW)/\epsilon')$$

• whenever d(u, v) changes: < 2n recursive calls to Update

How often can d(u, v) change?

- for a $d(u, v) < \infty$: $d(u, v) \le t(u, v) < (1 + \epsilon')^{\lceil \log_2 n \rceil + 2} nW$
- d(u, v) can only increase
- ullet d(u,v) always non-negative integral power of $(1+\epsilon')$
- changes:

$$O\left(\log_{1+\epsilon'}\left(1+\epsilon'\right)^{\log_2 n} nW\right) = O(\log(nW)/\epsilon')$$

- whenever d(u, v) changes: < 2n recursive calls to Update
- total update time:

$$O(n^3 \log(nW)/\epsilon' + \Delta)$$

How often can d(u, v) change?

- for a $d(u, v) < \infty$: $d(u, v) \le t(u, v) < (1 + \epsilon')^{\lceil \log_2 n \rceil + 2} nW$
- d(u, v) can only increase
- \bullet d(u, v) always non-negative integral power of $(1 + \epsilon')$
- changes:

$$O\left(\log_{1+\epsilon'}\left(1+\epsilon'\right)^{\log_2 n} nW\right) = O(\log(nW)/\epsilon')$$

- whenever d(u, v) changes: < 2n recursive calls to Update
- total update time:

$$O(n^3 \log(nW)/\epsilon' + \Delta) = O(n^3 \log n \log(nW)/\epsilon + \Delta)$$

In each call to Update(u, v) compute t(u, v) 3 cases:

• relevant path not affected by changes (no change to t'(u,v) and $\beta(u,v)$) $\rightarrow O(1)$

In each call to Update(u, v) compute t(u, v) 3 cases:

- relevant path not affected by changes (no change to ${\bf t}'(u,v)$ and $\beta(u,v)$) $\rightarrow {\bf O}(1)$
- alternative path can be found (only $\beta(u, v)$ increases) \rightarrow at most n times before $\mathbf{t}'(u, v)$ also changes
- t'(u, v) is updated:

In each call to Update(u, v) compute t(u, v) 3 cases:

- relevant path not affected by changes (no change to t'(u,v) and $\beta(u,v)$) $\rightarrow O(1)$
- alternative path can be found (only $\beta(u, v)$ increases) \rightarrow at most n times before t'(u, v) also changes
- t'(u, v) is updated: $\rightarrow O(\log(nW)/\epsilon')$ times
- total cost to compute t(u, v):

$$O(n\log(nW)/\epsilon')$$

Thank you for your attention!