Simple label-correcting algorithms for partially dynamic

approximate shortest paths in directed graphs
Adam Karczmarz, Jakub tacki

Mara Grilnberger

University of Salzburg
Department of Computer Science

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 1/18

Setting

@ maintaining (approximate) shortest paths in weighted, directed graph
G where weights are non-negative

@ partially dynamic setting

@ incremental setting:

o edge can be inserted
e weight of an edge can decrease

@ decremental Setting:

o edge deletions
e weight of an edge can increase

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 2/18

Related Work and Motivation

@ many existing solutions for different settings

@ main focus: APSP in decremental setting

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 3/18

Related Work and Motivation

@ many existing solutions for different settings
@ main focus: APSP in decremental setting
@ best deterministic algorithm (dense graphs):
using King's decremental transitive closure algorithm:
— graphs G?' contain edge uv: path u to v in G with < 2/ hops —

h-SSSP algorithm (Bernstein) to maintain approximate distances

o O(n?log® nlog(nW)/e + A) total update time
O(n?log nlog(nW)) space

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 3/18

Related Work and Motivation

@ many existing solutions for different settings
@ main focus: APSP in decremental setting
@ best deterministic algorithm (dense graphs):
using King's decremental transitive closure algorithm:
— graphs G?' contain edge uv: path u to v in G with < 2/ hops —
h-SSSP algorithm (Bernstein) to maintain approximate distances
o O(n?log® nlog(nW)/e + A) total update time
O(n?log nlog(nW)) space
e this paper: O(n3log nlog(nW)/e + A)

additional space: O(n?)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 3/18

Motivation

@ shortest path algorithms maintain distance estimates d : V — R and
relaxing edges/vertices

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 4/18

Motivation

@ shortest path algorithms maintain distance estimates d : V — R and
relaxing edges/vertices

edge relaxation

A weighted edge uv is called relaxed, if d(v) < d(u) + w(uv) where w(uv)
is the weight of edge uv, and tense otherwise.

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 4/18

Motivation

@ shortest path algorithms maintain distance estimates d : V — R and
relaxing edges/vertices

edge relaxation

A weighted edge uv is called relaxed, if d(v) < d(u) + w(uv) where w(uv)
is the weight of edge uv, and tense otherwise.

@ relaxing a tense edge: set d(v) = d(u) + w(uv)

@ also works in incremental setting

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 4/18

Motivation

@ shortest path algorithms maintain distance estimates d : V — R and
relaxing edges/vertices
edge relaxation

A weighted edge uv is called relaxed, if d(v) < d(u) + w(uv) where w(uv)
is the weight of edge uv, and tense otherwise.

@ relaxing a tense edge: set d(v) = d(u) + w(uv)
@ also works in incremental setting

@ decremental setting:

vertex relaxation

A vertex v is called relaxed, if d(v) < min,,cg(g){d(u) + w(uv)} and we
set d(v) := min, cg(g){d(u) + w(uv)}

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 4/18

Approximate APSP - Idea

@ each pair of vertices: maintain distance estimate d(u, v)
o distance estimates: (1 + €) approximations of real distance

@ relaxation operation:
e compute t(u, v): estimated length of shortest path from u to v

o set distance estimate to t(u, v)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 5/18

Approximate APSP - Idea

each pair of vertices: maintain distance estimate d(u, v)

o distance estimates: (1 + €) approximations of real distance

relaxation operation:
e compute t(u, v): estimated length of shortest path from u to v

o set distance estimate to t(u, v)

@ when distance estimate increases
e check all possibly affected distance estimates d(w, z)

o increase them if d(w, z) < t(w, z)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 5/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,vv W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,vv W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

S w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,vv W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

t(u,v) =114(1) =1

S w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,vv W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

t(u,v) =r14(1)

1 9 t(v,w) =r114(2) = (1 + e)j

S w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,vv W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

t(u,v) =114(1) =1
1 9 w(sv) =3

S w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,va W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

u 1 v
t(u,v) =114(1) =1
1 9 w(sv) =3
3 Ms,, = {(1+1),00}
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,va W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

u 1 v
t(u,v) =114(1) =1
1 9 w(sv) =3
3 Ms,, = {(1+1), 00}
- ~ t(s, v) = 114(2)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Relaxation Operation

o My, ={d(u,z) +d(z,v) : z€ V\ {u,v}}

t(u, V) = 1"1+5(min(Mu,va W(UV)))

where:
ripe(x) = (1 + i8]

we round the value x > 0 up to nearest (1 + €)' for i € Ny

u 1 v
t(u,v) =r14(1) =1
1 9 w(sv) =3
3 Ms, = {(1+1),00}
: . 5 v) = r14e(2) = (1 + ¢}

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 6/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)

o If distance estimate d(u, v) # t(u, v): update it
o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u 1 v s |u v w
s| 0|1]r(?2 r(2r(2))
1 5 uloo| 0 1 r(r(2) +1)
3 v oo|oo| O r(2)
W |oo |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u I3 v s | u v w
s| 0|1]r(?2 r(2r(2))
1 5 uloo| 0 1 r(r(2) +1)
3 v oo|oo| O r(2)
W |oo |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u I3 v s | u v w
s| 0|1]r(?2 r(2r(2))
1 5 uloo| 0 1 r(r(2) +1)
3 v oo|oo| O r(2)
W |oo |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u I3 v s | u v w
s| 0] 11?2 r(2r(2))
1 5 ujool| 0 |r(3) | r(r(2)+1)
3 v oo|oo| O r(2)
W |oo |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u I3 v s | u v w
s| 0|13 r(2r(2))
1 5 ujool| 0 |r(3) | r(r(2)+1)
3 v oo|oo| O r(2)
W |00 |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u I3 v s | u v w
s| 0|13 r(2r(2))
1 5 ujoo| 0 |r(3) | r(x(2)+1)
3 v oo|oo| O r(2)
W |oo |00 | 00 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u 13 v s u Y, w
s| 0|13 r(2r(2))
1 5 uloo| 0 |r(3)] r(r(2)+1(3))
3 v oo|oo| O r(2)
w | oo | oo | oo 0
s w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP - Update

Update(u, v):
e Calculate t(u, v)
o If distance estimate d(u, v) # t(u, v): update it

o Forevery y € V\ {u,v}:
Update(y, v) and Update(u, y)

u 13 v s u Y, w
s| 0|1 |13 rr(2)+1(3)
1 5 uloo| 0 |r(3)] r(r(2)+1(3))
3 v oo|oo| O r(2)
w| oo |oo| o 0
S w

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 7/18

Approximate APSP

@ Eventually no distance estimate left to update

e invariant: d(u, v) < t(u,v) at all times and d(u, v) = t(u, v) after
Update procedure stops

@ weights only increase or edges deleted: t(u, v) can only become larger
or stay the same

@ when d(u, v) is not (yet) reset: d(u, v) < t(u,v)
Update(u,v) sets d(u, v) to t(u, v)

@ path from y to v contains path u — v, d(y, v) is also updated and
set to t(y, v)
Similar for a path that begins with u — v

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 8/18

Approximation

Repeated use of r14.: not a (1 + €)-approximation
Specifically:
Lemma 1

Let G be a non-negatively weighted directed graph.
If d: V x V — RU/{oo} satisfies the following:

Q d(v,v)=0forallveV
Q@ 0<d(u,v)=t(u,v) for all u,v € V such that u# v

Then for any u,v € V and any integer h > 0, we have
d6(u,v) < d(u,v) < (1+ €)M THGE (u, v)

v

where 0 (u, v) is the length of the shortest path from u to v with at most
h edges

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 9/18

Approximation - Proof

For: d0g(u,v) < d(u,v)
d(u,v) = t(u, v) and t(u, v) cannot underestimate the actual distance

For d(u,v) < o0
o d(u,v) =riye(w(uv)) — edge uvisin G

o d(u,v) =r14e(d(u, w) + d(w, v)) for some w

— path P; from u to w, Py from w to v
— eventually break down into edges
— rounding only makes the values larger

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 10/18

Approximation - Proof

For: d0g(u,v) < d(u,v)
d(u,v) = t(u, v) and t(u, v) cannot underestimate the actual distance

Show that: d(u, v) < (1 + €)[1°821+154 (4 v) by induction on h
Assume: 02 (u,v) < oo

h=1:
Edge uv is in G and therefore §%(u, v) < w(uv)
By definition of t(u, v) and (2) we have that:

d(u,v) <rtiye(w(uv)) < (14 €)w(uv)
= (1 + e)llos2 M50y)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 11/18

Approximation - Proof

Show that: d(u, v) < (1 + €)[1°82#1+154 (4 v) by induction on h
Assume: 0 (u, v) < o0

h>2:
Path Q with h edges:

u w v

Q1 with < [h/2] edges Qo with < [h/2] edges
By IH we get:

d(u, w) < (1 + ¢)lloe2 fh/2ﬂ+15£h/ﬂ (u, v)
(]. —|— 6) “OgQ |Vh/2“‘|+1 length(ol)

IN

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 12/18

Approximation - Proof

Since h > 2:

d(u, w) +d(w, v) < (1+ €)1 72T+ (length(Q1) + length(Q2))
(14)82 " Jength(Q)

IN

Also:

d(u,v) <rtiye(d(u,w) + d(w,v))
(14 e)(d(u, w) + d(w, v))
(

1+ €)/1o82 "1+ Jength(Q)

IA A

IN

Also holds for shortest path with at most h edges between u and v.

d(u,v) < (1+)= P15k (0, v)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 13/18

(1 + €) - Approximation

Approximation depends on the number of hops h < n we allow.

To get (1 + €)-approximation:

€ [logy n]+1 /o
.) <e
(2 [(logy n)]

and since € € (0,1)

<l+e

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 14 /18

Computing Minima

Recomputing t(u, v) every time a distance between two vertices might
have changed — Not very efficient!
Instead: store an approximation t'(u, v) along with an index 3(u, v)

@ order vertices wy, ..., w, in some way

@ remember first index i for which:
r14e(d(u, wi) + d(w;, v)) =t/ (u, v)

e reevaluating t'(u, v):
o if riye(w(uv)) =t'(u,v) = t/(u, v) stays the same
o look for alternative path that lets us keep distance t'(u, v):
Only need to look at indices j > SB(u, v)
o if estimated length of shortest path actually changed: recompute
t'(u, v)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths

15/18

Total Update Time

How often can d(u, v) change?
e for a d(u,v) < co: d(u,v) < t(u,v) < (1 + ¢)82"1+2 ppy
@ d(u,v) can only increase

@ d(u, v) always non-negative integral power of (1 + ¢’)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 16 /18

Total Update Time

How often can d(u, v) change?
for a d(u, v) < oo: d(u, v) < t(u,v) < (1 + ¢)82"142 pyy
d(u, v) can only increase

d(u, v) always non-negative integral power of (1 + ¢’)

changes:

© <log1+e' (1+ 6/)10g2 ’ ”W) = O(log(nW)/€)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 16 /18

Total Update Time

How often can d(u, v) change?
for a d(u, v) < oo: d(u, v) < t(u,v) < (1 + ¢)82"142 pyy
d(u, v) can only increase

d(u, v) always non-negative integral power of (1 + ¢’)

changes:

© <log1+e' (1+ 6/)10g2 ’ ”W) = O(log(nW)/€)

whenever d(u, v) changes: < 2n recursive calls to Update

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 16 /18

Total Update Time

How often can d(u, v) change?
e for ad(u,v) <oo: d(u,v) <t(u,v) < (1+ e’)nog2 "2
@ d(u,v) can only increase
@ d(u, v) always non-negative integral power of (1 + ¢’)

@ changes:

© <log1+e' (1+ 6/)10g2 ’ ”W) = O(log(nW)/€)

whenever d(u, v) changes: < 2n recursive calls to Update

total update time:

O(n*log(nW)/e + A)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 16 /18

Total Update Time

How often can d(u, v) change?
e for ad(u,v) <oo: d(u,v) <t(u,v) < (1+ e’)nog2 "2
@ d(u,v) can only increase
@ d(u, v) always non-negative integral power of (1 + ¢’)

@ changes:

© <log1+e' (1+ 6/)10g2 ’ ”W) = O(log(nW)/€)

whenever d(u, v) changes: < 2n recursive calls to Update

total update time:

O(n*log(nW)/e + A) = O(n®log nlog(nW)/e + A)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 16 /18

Computing Minima

In each call to Update(u, v) compute t(u, v)
3 cases:

@ relevant path not affected by changes (no change to t/(u, v) and

B(u,v))
— O(1)

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 17/18

Computing Minima

In each call to Update(u, v) compute t(u, v)
3 cases:

@ relevant path not affected by changes (no change to t/(u, v) and

B(u,v))
— O(1)

@ alternative path can be found (only S(u, v) increases)
— at most n times before t'(u, v) also changes

e t'(u,v) is updated:

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 17/18

Computing Minima

In each call to Update(u, v) compute t(u, v)
3 cases:

@ relevant path not affected by changes (no change to t/(u, v) and

B(u,v))
— O(1)

@ alternative path can be found (only S(u, v) increases)
— at most n times before t'(u, v) also changes

e t'(u,v) is updated:
— O(log(nW)/€') times

@ total cost to compute t(u, v):

O(nlog(nW)/€")

Mara Grilnberger (University of Salzburg) Approximate Shortest Paths 17/18

Thank you for your attention!

Approximate Shortest Paths 18/18

	Motivation and Preliminaries
	Partially Dynamic: Incremental vs Decremental settings
	Exact vs Approximate SSSP in Partially Dynamic Settings
	Exact vs Approximate APSP in Partially Dynamic Settings
	Recap and Conclusion

