Fast Computation by Population Protocols With
A Leader

Dana Angluin, James Aspnes, David Eisenstat

presented by: Hugo Platzer

Jan 13 2020

Introduction

» There are a number of different formal models of computation:
Turing machines, register machines, lambda calculus etc.

» Population Protocols are another such model of computation

» Lots of agents with limited local state and no information
about the global state (e.g., molecules in solution, sensors on
vehicles etc.)

P> Agents interact randomly without a central authority

» By carefully tuning the way agents interact, they can be made
to compute some useful global property

Contents

Population Protocols (in general)

Population Protocols (for computation)

>
>
» Building blocks of the Population Protocol computer
» Operations of the Population Protocol computer

>

Possible optimizations, outlook, applications

Population Protocols

> Set of agents {A;...A,}, not ordered (numbering used to
facilitate description of model)

» Finite set of states {Q;...Qx}: Each agent is in one of these
states at a time

» Number of states is a property of the protocol, not the input
size = The number of states must not depend on n

» Total agent state: Multiset of elements of @

» Transition function (a, b) — (&, b’), takes an ordered pair of

states (can be thought of as initiator and responder) and gives
new states for both agents

Population Protocols

» Interaction: Pick two distinct agents (A;, A;) of Q, apply the
transition function to update their states

» Execution: infinite sequence of agent pairs (A;, A;), specifying
which two agents transition in this interaction

» Fairness: originally an adversary that guarantees: if some
agent configuration occurs infinitely often, then any
configuration reachable also occurs infinitely often during the
execution

» but in this paper: focus on random uniform pick of pairs (/,)

» Convergence: After a certain number of execution steps, all
agents will remain in one of the final states forever

» Initialization of states: can be uniform (if doing leader
election), or based on input (when computing predicates)

Population Protocols by example: Leader election

Two states: 1 (leader), 0 (follower)
All agents start in state 1
Transition: (1,1) — (1,0)
Example (red: initiator, blue: responder):

[1,1,1,1,1]

(1,1,0,1,1]

[1,1,0,1,1]

[1,1,0,0,1]

[1,1,0,0,1]

[1,0,0,0,1]

[1,0,0,0,0]

» This protocol takes an expected n? interactions to converge

Computation with Population Protocols

> Agents A;..Ap

> Integer registers R;..R,,, each agent stores one bit of each
register in unary

» Value of register Ry: > ; Ai[k] (remember agents are not
ordered)

» Therefore, for a population size of n, each register can store a
number from 0 to n.

> State of agent: One bit for each register, plus additional
information about the current instruction being executed,
remember the number of states is not dependent on n

» Designated leader agent: Tells other agents which instruction
to execute, when to move from one instruction to the next

> Program: List of instructions that operate on registers
(addition, comparison, zero test) plus control flow instructions
(conditions, loops)

Building block: Epidemics

v

vvyyy

Simplest building block of Population Protocol algorithms

Used to spread a small piece of information (register bit,
current instruction)

Leader starts epidemics to tell all agents to execute next
instruction

States: 0 (susceptible), 1 (infected)

Initialization: all agents start in O state, except for leader
Transition: (1,0) — (1,1)

Convergence (all agents infected) w.h.p. guaranteed in
O(nlog n) interactions

Building block: Phase clock

» Any instruction needs a certain number of interactions to
complete w.h.p. (typically ©(nlog n))

P Leader needs to broadcast signal to start next instruction at
the right time

» Problem: leader has no knowledge of other interactions, finite
state

» Solution: use duration of an epidemic to get a sense of time

» reduce variance by giving the epidemic m different stages,
tunable parameter, larger m means longer clock cycle (m too
big does not hurt)

» States 0...m — 1, leader starts in state 0, all others in state
m-—1

Building block: Phase clock

» Transition:
(a,b) = (a,b+1 mod m) responder is leader, a = b

(a, b) — (a, b) responder is leader, a # b
responder is not leader,

(2,6) = (2,2) ac[b+1.b+ 7] mod m

responder is not leader,

a¢[b+1..b+ 3] mod m

P phase: leader receives its own stage, goes to next stage

(a, b) — (a, b)

» round: leader returns to stage 0 (m phases)

» For any d; and c, there is a parameter m and a constant db
so that the phase clock completes n¢ rounds each taking
between di In n and d> In n interactions with probability at

least 1 — n™¢.

Building block: Duplication

P used to add two registers A, B

States: (0,0),(0,1),(1,1) (two register bits)

> Register state (1,0) is converted to (0,1) beforehand
((1,1), (0,0)) — ((0,1), (0, 1))
((0,0),(1,1)) = ((0,1),(0, 1))

» 1s from first register are moved to second register

v

» Transition:

» invariant: preserves A + B after every step

» if A+ B < n, eventually all 1s from A will have been moved
to B

» Convergence w.h.p. can take ©(n?) interactions

» Convergence w.h.p. in O(nlog n) interactions guaranteed if
2A+B< 1

» Test for success: A =07

Building block: Cancellation

vwvyy

v

vVvYvyVvVvyVvyy

v

used to compare two registers A, B

States: (0,0),(0,1),(1,0) (two register bits)
Register state (1,1) is converted to (0,0) beforehand
((1,0),(0,1)) = ((0,0),(0,0))
((0,1),(1,0)) — ((0,0),(0,0))

invariant: preserves A — B after every step

if A> B, eventually A will have A — B 1s, B will have all 0s
if B > A, eventually B will have B — A 1s, A will have all 0s
if A= B, eventually A=B=0

Convergence w.h.p. can take ©(n?) interactions

After O(nlog n) interactions, w.h.p. the number of (0,1)
states is at most g, same for the number of (1,0) states

Test for success: A=0V B =07

Transition:

Building block: Probing

» Test whether there is any agent that satisfies some predicate
(typically: is some register bit 1?)
» States: 0,1,2 (in addition to other information at agent)

» Initialization: leader in state 1 (if not satisfied), 2 (if satisfied)
, all other agents in state 0

(x,y) — (x, max(x,y)) responder not satisfied

(0,y) — (0, y) responder satisfied

(1,y) — (1,2) responder satisfied

(2,y) — (2,2) responder satisfied

» if there is an agent satisfying the predicate, eventually all
agents will be (and stay) in state 2

» Transition:

» otherwise, eventually all agents will be (and stay) in state 1

v

Leader checks its state to get result

» Convergence w.h.p. in O(nlog n) interactions

Microcode instructions

>
Instruction Effect on state of agent i
NOOP No effect.
SET(A) SetA; = 1.
COPY(A,B) Copy A, to B;
DUP(A,B) Run duplication protocol on state (4;,B;).
CANCEL(A,B) Run cancellation protocol on state (A;, B;).
PROBE(A) Run probe protocol with predicate A; = 1.

» run all operations for ©(nlog n) interactions, the constant
needs to be tuned (large enough) of course

High-level operations

>
Operation Effect Implementation Notes
Constant 0 A—0 SET(—A)
Constant 1 A1 SET(~4)
Aleader — 1
Assignment A+—B COPY(B,A)
COPY(B,X)
Addition A—A+B DUP(X.A) May fail with X £0ifA+B > n/2.
PROBE(X)
Multiplication A — kB Use repeated addition. k=0(1)
Zero test AZ£0? PROBE(A)

» These basic operations take a constant number of microcode
operations, therefore O(nlog n) interactions

Operation: Comparison
Algorithm 1 Comparison algorithm COMPARE.

1: A" — A.
2. B« B.
3: C+ 1.
4: r—0.
5: while true do
6: CANCEL(A’,B). A' - B' preserved
7: ifA’ =0and B’ = 0 then
8: return A = B. CANCEL successful
9: else if A’ = 0 then (eliminated one register)
10: return A < B.
11: elseif B’ = 0 then
12: return A > B.
13: end if
14 re=1-r CANCEL failed,
15:if r = 0 then however A<n/8,B<n/8
16: C—C+C.
17: if addition failed then repeat loop for
18: return A = B. 2 log2 n times
19: end if if still no elimination, A = B
20: end if
21: Al —A'+A.
22- B —B +B. A' - B' doubled

23: end while

| 2
» Requires O(log(n)) instructions, returns correct result w.h.p.

Operation: Subtraction

>

Algorithm 2 Subtraction algorithm SUBTRACT.

P?PE‘QH‘:'?‘*’NH

A —A.
: B —B.
: CANCEL(A",B).

if B’ = 0 then If this fails, A<n/8, B<n/8
C—A.
return.
end if
C—0. build C (difference) using binary search
while A’ # B’ +C do
D+ 1.
while A’ > B +C+D+D do f‘t’:ﬁ ml"ssstl:égl'r‘"féca“t bit
D~ D+D. s
end while
C < C+D. introduce this bit to C

. end while

» Requires O(log3(n)) instructions, returns correct result w.h.p.

Other operations

» Division
» Shift divisor to the left as long as its not larger than dividend
(log? n instructions)
> Subtract from dividend (log® n instructions)
> Repeat for all log(n) bits of dividend
> Also keep track of quotient (shift from 1 to the left, add to
total)
» O(log* n) instructions
> Extract individual bits

» Extract bit: Divide by 2 until desired bit is least significant
(log n divisions)

> Test for even / odd by dividing by 2, multiplying by 2,
comparing

» Set bit: Test bit, if not already correct: Shift 1 to the left to
match up with bit, add / subtract to change bit

» O(log® n) instructions

Outlook

v

vy

Optimize subtraction by balanced representation

>
>
>
>

>

Balanced representation: Each register consists of a positive
and a negative part: A= AT — A~

Addition: add positive to positive, negative to negative
Subtraction: add positive to negative, negative to positive
Use cancellation to keep parts from growing too big

Faster subtraction also means faster division

Faster simulation of LOGSPACE turing machines

Faster evaluation of semilinear predicates using random-walk
broadcast

Obtain a single leader in O(nlog* n) interactions

Fault tolerance, non-uniform distribution of interactions

