Fast Deterministic Fully Dynamic Distance

Approximation

Sebastian Forster

Meeting on Algorithmic Challenges of Big Data 2022

University of Salzburg

Joint work with: Jan van den Brand Yasamin Nazari

.
3

\

Static Approach

Input — ———— Output

Dynamic Distance Maintenance

Input graph G Algorithm Distance Matrix

N = =)
N DN = O =

1 11
1 1 1
0 2 2
2 01
2 10

Dynamic Distance Maintenance

Input graph G Algorithm Distance Matrix

N = =)
N DN = O =

1 11
1 1 1
0 2 2
2 01
2 10

Adversary inserts

and deletes edges

Dynamic Distance Maintenance

Input graph G Algorithm Distance Matrix

N = =)
N DN = O =

1 11
1 1 1
0 2 2
2 01
2 10

Adversary inserts

and deletes edges

Dynamic Distance Maintenance

Input graph G Algorithm Distance Matrix
2111
2 01 3 3
1 0 2 2
3 2 2 01
32 2 10
Adversary inserts Algorithm updates

and deletes edges distance matrix

Dynamic Distance Maintenance

Input graph G Algorithm Distance Matrix
21 11
2 01 3 3
1 0 2 2
3 2 2 01
3 2 2 10
Adversary inserts Algorithm updates
and deletes edges distance matrix

State of the Art

Amortized update time O(n?) [Demetrescu, Italiano *03]

Subquadratic Update Time: State of the Art

« Update-query time trade-offs:
« exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
« (1 + e)-approximation: [v.d. Brand, Nanongkai "18]

Subquadratic Update Time: State of the Art

« Update-query time trade-offs:
« exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
« (1 + e)-approximation: [v.d. Brand, Nanongkai "18]
« Partial information (single source, single pair):
« exact: [Sankowski ’05]
« (1 + e)-approximation: [v.d. Brand, Nanongkai *18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21]

Subquadratic Update Time: State of the Art

« Update-query time trade-offs:
« exact: [Sankowski ’05] [v.d. Brand, Nanongkai, Saranurak ’18]
« (1 + e)-approximation: [v.d. Brand, Nanongkai "18]

« Partial information (single source, single pair):

« exact: [Sankowski ’05]

« (1 + e)-approximation: [v.d. Brand, Nanongkai *18]
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21]

+ Large multiplicative stretch:

« Dynamic spanners: [Ausiello, Franciosa, Italiano *05] [Elkin *07]
[Baswana, Khurana, Sarkar *12], [Bodwin, K ’16] [Bernstein, F,
Henzinger ’19] [Bernstein, v.d. Brand, Gutenberg, Nanongkai,
Saranurak, Sidford, Sun '22]

« Dynamic distance oracles: [Abraham, Chechik, Talwar *14] [F,

Goranci, Henzinger ’21]

Towards Dynamic Algorithms without Caveats

“Gold standard”:
+ Fully dynamic

+ Worst-case update time

o Deterministic

« Meet an update-time barrier

Towards Dynamic Algorithms without Caveats

“Gold standard”:
+ Fully dynamic

+ Worst-case update time

o Deterministic

« Meet an update-time barrier

List of problems with such algorithms is small

Towards Dynamic Algorithms without Caveats

“Gold standard”:
+ Fully dynamic

+ Worst-case update time

o Deterministic

« Meet an update-time barrier

List of problems with such algorithms is small

Contribution

We add to this list: (1 + €)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari arXiv
'21]

Our Results

Distance approximation in unweighted, undirected graphs:

‘ Approx. ‘ Type Update Time
1+e¢ single pair O(n1407)
1+4+e€ | single source 0(n'>%%)
1+e€ k sources o(n'>% + kn1+°(1))
l1+e all pairs O(n2+o())

Our Results

Distance approximation in unweighted, undirected graphs:

‘ Approx. ‘ Type ‘ Update Time ‘
1+e¢ single pair O(n1407)
1+4+e€ | single source 0(n'>%%)
1+e€ k sources o(n'>% + kn1+°(1))
l1+e all pairs O(n2+o())

« Improvement from randomized to deterministic

(and smaller update time in case of single pair)

Our Results

Distance approximation in unweighted, undirected graphs:

‘ Approx. ‘ Type ‘ Update Time ‘
1+e¢ single pair O(n1407)
1+4+e€ | single source 0(n'>%%)
1+e€ k sources o(n'>% + kn1+°(1))
l1+e all pairs O(n2+o())

« Improvement from randomized to deterministic

(and smaller update time in case of single pair)

« Update times match (conditional) lower bounds [van den

Brand, Nanongkai, Saranurak *19]

Further Results

Randomized Algorithms

« Exact single-pair distance: O(n'7%%)

(Improves upon O(n!72%) [Sankowski ’05] [v.d. Brand,
Nanongkai, Saranurak 19])

Further Results

Randomized Algorithms

« Exact single-pair distance: O(n'7%%)

(Improves upon O(n!72%) [Sankowski ’05] [v.d. Brand,
Nanongkai, Saranurak 19])
« “Nearly” (% + €)-approximation of diameter: O(n'->?®)

(Improves upon O(n!7”?) [v.d. Brand, Nanongkai *19]

Further Results

Randomized Algorithms

« Exact single-pair distance: O(n'7%%)

(Improves upon O(n!72%) [Sankowski ’05] [v.d. Brand,
Nanongkai, Saranurak 19])

« “Nearly” (% + €)-approximation of diameter: O(n'->?®)
(Improves upon O(n!7”?) [v.d. Brand, Nanongkai *19]

« Update/query trade-off for (1 + €)-approximate distance:
O(n'788) update time / O(n**) query time
(Improves upon O(n'#2) / O(n%4%) [v.d. Brand, Nanongkai ’19]

Further Results

Randomized Algorithms

« Exact single-pair distance: O(n'7%%)

(Improves upon O(n!72%) [Sankowski ’05] [v.d. Brand,
Nanongkai, Saranurak 19])

« “Nearly” (% + €)-approximation of diameter: O(n'->?®)
(Improves upon O(n!7”?) [v.d. Brand, Nanongkai *19]

« Update/query trade-off for (1 + €)-approximate distance:
O(n'788) update time / O(n**) query time
(Improves upon O(n'#2) / O(n%4%) [v.d. Brand, Nanongkai ’19]

Warm Up

Randomized fully dynamic (1 + €)-approximate single-source

distances with worst-case update time O(n!?%).

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > /n
« Maintain ©(1/€)-bounded distances to all nodes from hitting

set nodes and source node s

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > \n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > \n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')
« Compute (exact) single-source distances on H
- Return min(oAiG(s, v), dy(s, v)) for every node v

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > /n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')
« Compute (exact) single-source distances on H

- Return min(&fG(s, v), dy(s, v)) for every node v

Related Work

Randomized algorithm for maintaining (1 + €, n°1)-spanner of
size n1 () with update time O(n!>?°) [Bergamaschi et al. ’21]

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > d := \/n has at least one node of Sin its
neighborhood.

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > d := \/n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > d := \/n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

VVVVVY

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > d := \/n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

VVVVVY

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > d := \/n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

VVVVVY

Only works against an oblivious adversary

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]
similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]
Lemma

Hisa(l+ % 2)-emulator of size O(n'-*)

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]
similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]
Lemma

Hisa(l+ % 2)-emulator of size O(n'-*)

— single-source distance on H in time O(n!-®) 10

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with

potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
.\Q ./.
A
Wy
Ay

. o - ¥ e ... o—o

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with

potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

- O—=O

« Case 2: Segment contains high-degree node

co®s

, @ /
Wy
Wy
N

. o - ¥ e ... o—o

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node

..
by
Wy
N

e ¥ e ..

— Detour of additive surplus 2

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 < 6/e+3 -1 +§

[6/e] = 6/e

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 6/e+3 _ €
[6/€] S 6/e 1+ 2
. If segment has length < [6/€], then additive error of 2

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 6/e+3 _ €
[6/€] S 6/e 1+ 2
. If segment has length < [6/€], then additive error of 2

Overall: multiplicative error of 1 + %, additive error of 2

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized

data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized

data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

« O(n®(#D) denotes time needed for multiplying an n x n#

matrix with an n# x n matrix

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized

data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

« O(n®(#D) denotes time needed for multiplying an n x n#

matrix with an n# x n matrix

« With y = 0.528 ..., update time is O((n'>?° + |A| - |B]) - h)

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized
data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

« O(n®(#D) denotes time needed for multiplying an n x n#
matrix with an n# x n matrix

« With y = 0.528 ..., update time is O((n'>?° + |A| - |B]) - h)

« With A = Su{s}, B=V(where [S| = O({n)), and h = O(1/e):
update time O(n'>2° /e)

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized
data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

. O(n®®1D) denotes time needed for multiplying an n x n*
matrix with an n# x n matrix

« With y = 0.528 ..., update time is O((n'>% + |A| - |B|) - h)

« With A = Su{s}, B=V(where [S| = O({n)), and h = O(1/e):
update time O(n'>2° /e)

Approximation Guarantee:

« If dg(s,v) < [6/€]: distance from algebraic data structure

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < 1 < 1 and any sets A, B CV, there is a randomized
data structure for maintaining the A x B distances up to < h with
update time O((n®HHVD=H 4 n+1 | A| - |B]) - h).

. O(n®®1D) denotes time needed for multiplying an n x n*
matrix with an n# x n matrix

« With y = 0.528 ..., update time is O((n'>% + |A| - |B|) - h)

« With A = Su{s}, B=V(where [S| = O({n)), and h = O(1/e):
update time O(n'>2° /e)

Approximation Guarantee:

« If dg(s,v) < [6/€]: distance from algebraic data structure
o If d5(s,v) > [6/€], then approximation from H becomes
1+ g)dG(s, v)+2<(1+ %)dG(s, v) + gdG(s, v) < (1 +€)dg(s,v)

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for

very small distances

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for
very small distances
2. Hitting set for neighborhoods can be maintained with a lazy

approach giving low recourse

Towards Deterministic Algorithm

Three ideas:

1. Randomization not necessary in algebraic data structure for
very small distances

2. Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse

3. Algebraic data structure can be extended to slowly changing

set of nodes

Dynamic Hitting Set

Our approach:
« Static recomputation: Time O(nd)
Greedy algorithm: O(log n)-approximation

Dynamic Hitting Set

Our approach:
« Static recomputation: Time O(nd)
Greedy algorithm: O(log n)-approximation
« Hitting set needs to be fixed after each update

Dynamic Hitting Set

Our approach:
« Static recomputation: Time O(nd)
Greedy algorithm: O(log n)-approximation
« Hitting set needs to be fixed after each update
« Each update affects at most two neighborhoods!
- Hitting set grows by < 2 nodes with each update
— size O(n/d + k) after k updates; can set k = n/d

Dynamic Hitting Set

Our approach:
« Static recomputation: Time O(nd)
Greedy algorithm: O(log n)-approximation
« Hitting set needs to be fixed after each update
« Each update affects at most two neighborhoods!
- Hitting set grows by < 2 nodes with each update
— size O(n/d + k) after k updates; can set k = n/d
- Simple amortized algorithm: Update time O(nd) = 0(d?) = O(n)
« Can make worst-case with standard technlque

Dynamic Hitting Set

Our approach:
« Static recomputation: Time O(nd)
Greedy algorithm: O(log n)-approximation
« Hitting set needs to be fixed after each update
« Each update affects at most two neighborhoods!
- Hitting set grows by < 2 nodes with each update
— size O(n/d + k) after k updates; can set k = n/d

« Simple amortized algorithm: Update time O(nd) =0(d?) = O(n)
« Can make worst-case with standard technlque

Dynamic Set Cover:

o Well studied problem [Gupta, Krishnaswamy, Panigrahi *17] [Abboud,
Addanki, Grandoni, Panigrahi, Saha *19] [Bhattacharya, Henzinger, Nanongkai "19]
[Bhattacharya, Henzinger, Nanongkai, Wu ’21]

« Off-the shelf algorithms not applicable in our setting

Deterministic Path Counting

Interpretation of algebraic data structures:

« Maintain M; j[k]: number of paths from i to j of length exactly k

Deterministic Path Counting

Interpretation of algebraic data structures:
« Maintain M; j[k]: number of paths from i to j of length exactly k

« Entries might be as large as o(n*)
— Field operation takes time O(klog n*) = O(k? log n)

« Significant overhead!

Deterministic Path Counting

Interpretation of algebraic data structures:
« Maintain M; j[k]: number of paths from i to j of length exactly k

« Entries might be as large as o(n*)
— Field operation takes time O(klog n*) = O(k? log n)

« Significant overhead!

Randomized approach:
« Actually interested in smallest k for which A; j[k] = 0

« Less time per operation with computation modulo random

prime, Schwartz-Zippel lemma

Deterministic Path Counting

Interpretation of algebraic data structures:
« Maintain M; j[k]: number of paths from i to j of length exactly k

« Entries might be as large as o(n*)
— Field operation takes time O(klog n*) = O(k? log n)

« Significant overhead!

Randomized approach:
« Actually interested in smallest k for which A; j[k] = 0

« Less time per operation with computation modulo random

prime, Schwartz-Zippel lemma

Observation: For k = O(1/€) we can live with overhead of
O(k*logn) = O(1/€%)

Novel Algebraic Bounded-Distance Data Structure

Theorem
Given any 0 <v < < 1 and any sets A, B C Vs.t. |A|, |B| < n*, there
is a randomized data structure for maintaining the A x B distances up

to < h under edge updates and set updates with update time
O((n® LA~ 4 p@LHN=V 4 g4V 4 |A] - |B]) - h2).

Novel Algebraic Bounded-Distance Data Structure

Theorem
Given any 0 <v < < 1 and any sets A, B C Vs.t. |A|, |B| < n*, there
is a randomized data structure for maintaining the A x B distances up

to < h under edge updates and set updates with update time
O((n® LA~ 4 p@LHN=V 4 g4V 4 |A] - |B]) - h2).

Two regimes:
« O((n"*7 +|A| - |B|) - h?) for |Al,|B| < n®%
» O((n"*® +|A| - |B|) - h*)

Novel Algebraic Bounded-Distance Data Structure

Theorem

Given any 0 <v < < 1 and any sets A, B C Vs.t. |A|, |B| < n*, there
is a randomized data structure for maintaining the A x B distances up
to < h under edge updates and set updates with update time

O((n® LA~ 4 p@LHN=V 4 g4V 4 |A] - |B]) - h2).

Two regimes:
« O((n"*7 +|A| - |B|) - h?) for |Al,|B| < n®%
» O((n"*® +|A| - |B|) - h*)

Idea:

« (Vanilla) algebraic approach based on periodic recomputations

Novel Algebraic Bounded-Distance Data Structure

Theorem
Given any 0 <v < < 1 and any sets A, B C Vs.t. |A|, |B| < n*, there
is a randomized data structure for maintaining the A x B distances up

to < h under edge updates and set updates with update time
O((n® LA~ 4 p@LHN=V 4 g4V 4 |A] - |B]) - h2).

Two regimes:
« O((n"*7 +|A| - |B|) - h?) for |Al,|B| < n®%
» O((n"*® +|A| - |B|) - h*)

Idea:

« (Vanilla) algebraic approach based on periodic recomputations
— Extension to set/row updates somewhat natural

— Essential case: Sets A and B fixed in advance

Novel Algebraic Bounded-Distance Data Structure

Theorem
Given any 0 <v < < 1 and any sets A, B C Vs.t. |A|, |B| < n*, there
is a randomized data structure for maintaining the A x B distances up

to < h under edge updates and set updates with update time
O((n® LA~ 4 p@LHN=V 4 g4V 4 |A] - |B]) - h2).

Two regimes:
» O((n'*7 +|A| - |B) - h*) for |A|B| < n®
» O((n'® +|A] - |B]) - h?)

Idea:
+ (Vanilla) algebraic approach based on periodic recomputations
— Extension to set/row updates somewhat natural
— Essential case: Sets A and B fixed in advance
+ We extend approach of [v.d. Brand, Nanongkai, Saranurak ’19]

to optimize for case of large query set 16

Challenges

« “Path-reporting” for algebraic approaches
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21] [Karczmarz, Mukherjee, Sankowski ’22]

+ Extend emulator-based approximation approach to weighted
graphs

Challenges

« “Path-reporting” for algebraic approaches
[Bergamaschi, Henzinger, Gutenberg, Vassilevska Williams,
Wein ’21] [Karczmarz, Mukherjee, Sankowski ’22]

+ Extend emulator-based approximation approach to weighted
graphs

» More dynamic algorithms without caveats

