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Graph Compression

Goal: Semantic Compression

Subgraph for algorithmic applications
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Too Good to be True?

“There ain’t no such thing as a free lunch.”

. . . except for ACSD 2018.
Thanks Christoph!
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Lossy Compression

Cannot reconstruct original graph a�er compression
→ Compression at cost of approximation

When are two graphs approximately the same?
→ Problem-specific measures
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Our World is not Static

Goal: Fast recomputation of solution a�er each
insertion/deletion of an edge
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Dynamic Graph Compression

Input graph G

adversary inserts and
deletes edges

Algorithm Compressed graph H

algorithm adds and
removes edges
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Let’s take a look under the hood!
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Example 1: Distance-Preserving Compression

Definition
A spanner of stretch t of G = (V ,E) is a subgraph H = (V ,E ′) such that

distG (u,v) ≤ distH (u,v) ≤ t · distG (u,v)

for all pairs of nodes u,v ∈ V .
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Discussion

Theorem
For every integer k , every graph with n nodes admits a spanner of stretch
t = 2k − 1 with O(n1+1/k ) edges.

k = 1: stretch 1, size O(n2) → input graph

k = 2: stretch 3, size O(n3/2)
...

k = logn: stretch O(logn), size O(n)

Lemma
This stretch/size-tradeo� is tight under the Girth Conjecture by Erdős.

Isn’t this stretch guarantee very weak?

In many applications: boosting approach for be�er approximation
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Our Spanner Results

Theorem ([Baswana, Sarkar ’08])
For every k , there is a dynamic algorithm that maintains a spanner of stretch
t = 2k − 1

with O(n1+1/kk8 log2 n) edges in amortized time O(7k/2) per update,

with O(n1+1/kk logn) edges in amortized time O(k2 log2 n) per update.

Amortized time: Time bound holds on average over a sequence of updates
Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, Henzinger, K submi�ed])
For every k , there is a dynamic algorithm that maintains a (2k − 1)-spanner with
O(n1+1/kk log7 n log logn) edges in worst-case time O(20k/2 log3 n) per update.

Theorem ([Goranci, K submi�ed])
For every k , there is a dynamic algorithm that maintains a (2k − 1)-spanner with
O(n1+1/k logn) edges in amortized time O(k log2 n) per update.
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More Succinct Compression
�estion: How much compression is possible?

Need to preserve connectivity: spanning tree is the limit

Number of edges: n − 1
Drawback: Cannot have “hard” stretch guarantee anymore, only average

Theorem ([Goranci, K submi�ed])
There is a dynamic algorithm that maintains a spanning tree of average stretch
t = no(1) with amortized time O(n1/2+o(1)) per update.

Matches stretch of seminal static construction! [Alon/Karp/Peleg/West]
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Example II: Cut-Preserving Compression

Definition ([Benczúr/Karger ’00])
A (1 ± ϵ)-cut sparsifier of G is a weighted subgraph H such that, for every cut
(C,V \C), the edges E[C,V \C] crossing the cut have weight

(1 − ϵ) ·wG (E[C,V \C]) ≤ wH (E[C,V \C]) ≤ (1 + ϵ) ·wG (E[C,V \C])
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Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with n nodes admits a (1 ± ϵ)-cut sparsifier with O(nϵ−2) edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng ’04]

Theorem (Abraham, Durfee, Koutis, K, Peng ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier with
O(nϵ−2 logn) edges in worst-case time O(ϵ−2 log7 n) per update.

First dynamic algorithm for this problem

Internally uses dynamic spanner with stretch O(logn)
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Conclusion

Graph compression
Mathematically clean framework

Powerful tool in modern algorithm design

My goals:
Rebuild graph compression results in the dynamic world

Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Thank you!
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