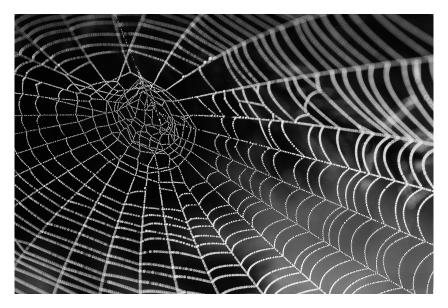
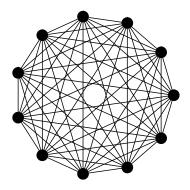
Towards Optimal Dynamic Graph Compression

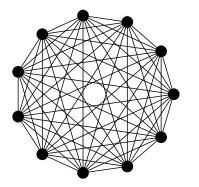
Sebastian Krinninger

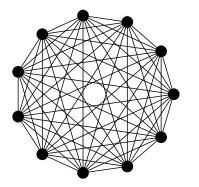
Universität Salzburg

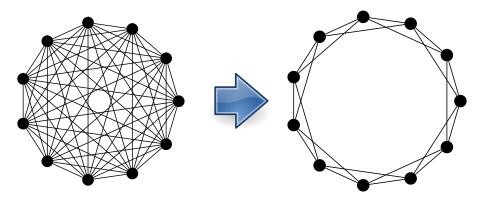
Austrian Computer Science Day 2018



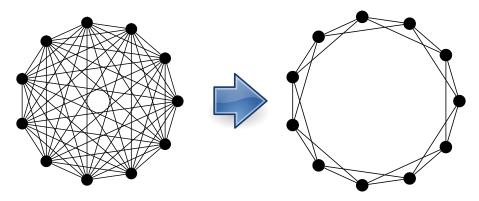








Goal: Semantic Compression



Goal: Semantic Compression

Subgraph for algorithmic applications

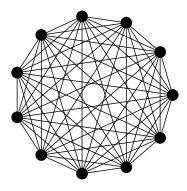
"There ain't no such thing as a free lunch."

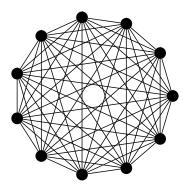
"There ain't no such thing as a free lunch."

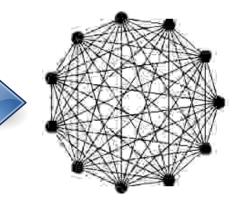
... except for ACSD 2018.

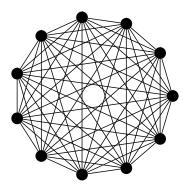
"There ain't no such thing as a free lunch."

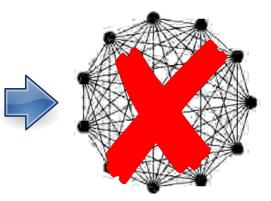
... except for ACSD 2018. Thanks Christoph!

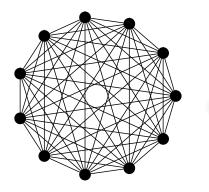


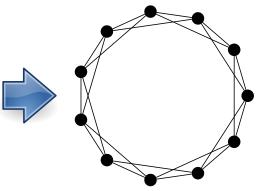


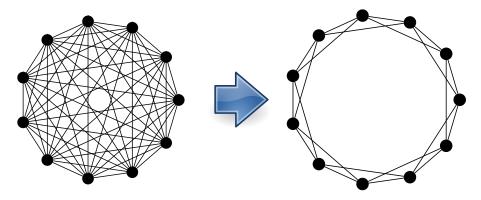




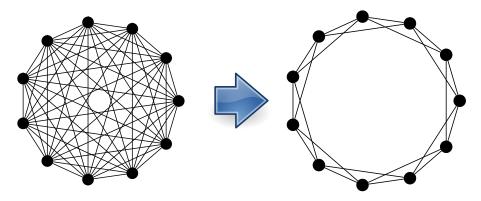








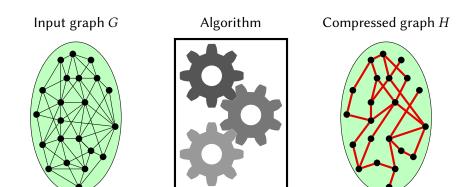
Cannot reconstruct original graph after compression \rightarrow Compression at cost of approximation

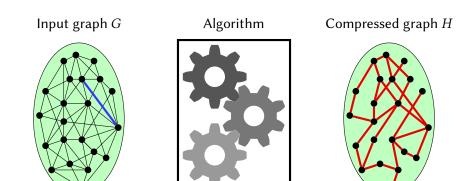


Cannot reconstruct original graph after compression \rightarrow Compression at cost of approximation

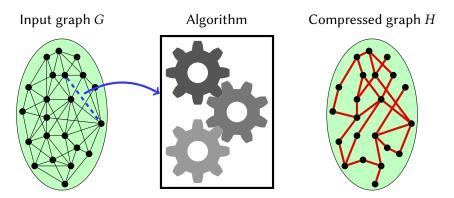
When are two graphs approximately the same? \rightarrow Problem-specific measures

Goal: Fast recomputation of solution after each insertion/deletion of an edge

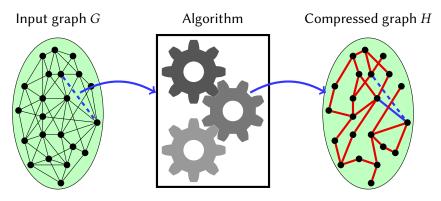




adversary inserts and deletes edges



adversary inserts and deletes edges



adversary inserts and deletes edges

algorithm adds and removes edges

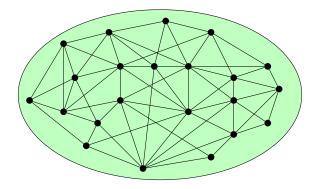
Let's take a look under the hood!

Definition

A spanner of stretch t of G = (V, E) is a subgraph H = (V, E') such that $dist_G(u, v) \le dist_H(u, v) \le t \cdot dist_G(u, v)$

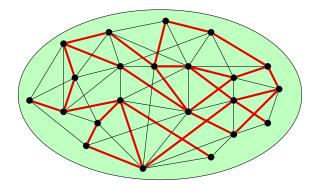
Definition

A spanner of stretch t of G = (V, E) is a subgraph H = (V, E') such that $dist_G(u, v) \le dist_H(u, v) \le t \cdot dist_G(u, v)$



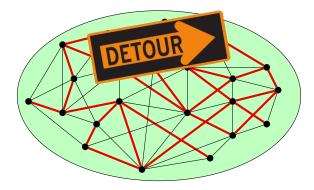
Definition

A spanner of stretch t of G = (V, E) is a subgraph H = (V, E') such that $dist_G(u, v) \le dist_H(u, v) \le t \cdot dist_G(u, v)$



Definition

A spanner of stretch t of G = (V, E) is a subgraph H = (V, E') such that $dist_G(u, v) \le dist_H(u, v) \le t \cdot dist_G(u, v)$



Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2)$

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

- k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph
- k = 2: stretch 3, size $O(n^{3/2})$

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

- k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph
- k = 2: stretch 3, size $O(n^{3/2})$
- $k = \log n$: stretch $O(\log n)$, size O(n)

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

- k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph
- k = 2: stretch 3, size $O(n^{3/2})$
- $k = \log n$: stretch $O(\log n)$, size O(n)

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdős.

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

•
$$k = 1$$
: stretch 1, size $O(n^2) \rightarrow$ input graph

• k = 2: stretch 3, size $O(n^{3/2})$

•
$$k = \log n$$
: stretch $O(\log n)$, size $O(n)$

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdős.

Isn't this stretch guarantee very weak?

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

•
$$k = 1$$
: stretch 1, size $O(n^2) \rightarrow$ input graph

• k = 2: stretch 3, size $O(n^{3/2})$

•
$$k = \log n$$
: stretch $O(\log n)$, size $O(n)$

Lemma

This stretch/size-tradeoff is tight under the Girth Conjecture by Erdős.

Isn't this stretch guarantee very weak?

In many applications: **boosting** approach for better approximation

Theorem ([Baswana, Sarkar '08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ edges in amortized time $O(7^{k/2})$ per update,
- with $O(n^{1+1/k}k \log n)$ edges in amortized time $O(k^2 \log^2 n)$ per update.

Theorem ([Baswana, Sarkar '08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ edges in amortized time $O(7^{k/2})$ per update,
- with $O(n^{1+1/k}k \log n)$ edges in amortized time $O(k^2 \log^2 n)$ per update.

Amortized time: Time bound holds on average over a sequence of updates

Theorem ([Baswana, Sarkar '08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ edges in amortized time $O(7^{k/2})$ per update,
- with $O(n^{1+1/k}k \log n)$ edges in amortized time $O(k^2 \log^2 n)$ per update.

Amortized time: Time bound holds on average over a sequence of updates Worst-case time: Hard upper bound for each update

Theorem ([Baswana, Sarkar '08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ edges in amortized time $O(7^{k/2})$ per update,
- with $O(n^{1+1/k}k \log n)$ edges in amortized time $O(k^2 \log^2 n)$ per update.

Amortized time: Time bound holds on average over a sequence of updates Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, Henzinger, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k - 1)-spanner with $O(n^{1+1/k}k \log^7 n \log \log n)$ edges in worst-case time $O(20^{k/2} \log^3 n)$ per update.

Theorem ([Baswana, Sarkar '08])

For every k, there is a dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ edges in amortized time $O(7^{k/2})$ per update,
- with $O(n^{1+1/k}k \log n)$ edges in amortized time $O(k^2 \log^2 n)$ per update.

Amortized time: Time bound holds on average over a sequence of updates Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, Henzinger, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k - 1)-spanner with $O(n^{1+1/k}k \log^7 n \log \log n)$ edges in worst-case time $O(20^{k/2} \log^3 n)$ per update.

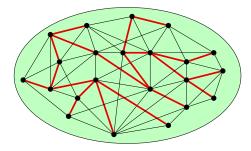
Theorem ([Goranci, K submitted])

For every k, there is a dynamic algorithm that maintains a (2k - 1)-spanner with $O(n^{1+1/k} \log n)$ edges in amortized time $O(k \log^2 n)$ per update.

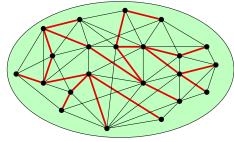
Question: How much compression is possible?

Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit

Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit

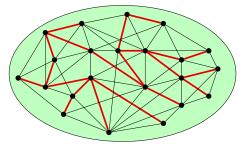


Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit



Number of edges: n - 1

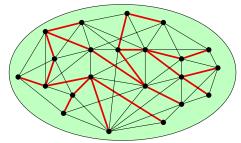
Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit



Number of edges: n - 1

Drawback: Cannot have "hard" stretch guarantee anymore, only average

Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit



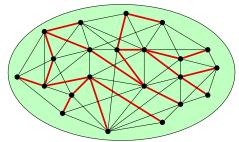
Number of edges: n - 1

Drawback: Cannot have "hard" stretch guarantee anymore, only average

Theorem ([Goranci, K submitted])

There is a dynamic algorithm that maintains a spanning tree of average stretch $t = n^{o(1)}$ with amortized time $O(n^{1/2+o(1)})$ per update.

Question: How much compression is possible? Need to preserve connectivity: spanning tree is the limit



Number of edges: n - 1

Drawback: Cannot have "hard" stretch guarantee anymore, only average

Theorem ([Goranci, K submitted])

There is a dynamic algorithm that maintains a spanning tree of average stretch $t = n^{o(1)}$ with amortized time $O(n^{1/2+o(1)})$ per update.

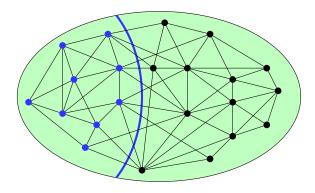
Matches stretch of seminal static construction! [Alon/Karp/Peleg/West]

Definition ([Benczúr/Karger '00])

A $(1 \pm \epsilon)$ -cut sparsifier of *G* is a weighted subgraph *H* such that, for every cut $(C, V \setminus C)$, the edges $E[C, V \setminus C]$ crossing the cut have weight

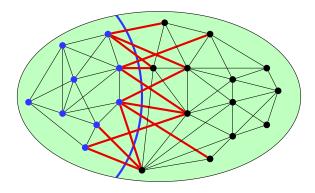
Definition ([Benczúr/Karger '00])

A $(1 \pm \epsilon)$ -cut sparsifier of G is a weighted subgraph H such that, for every cut $(C, V \setminus C)$, the edges $E[C, V \setminus C]$ crossing the cut have weight



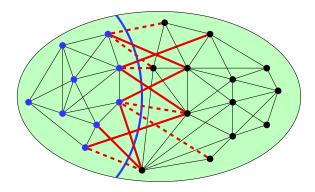
Definition ([Benczúr/Karger '00])

A $(1 \pm \epsilon)$ -cut sparsifier of G is a weighted subgraph H such that, for every cut $(C, V \setminus C)$, the edges $E[C, V \setminus C]$ crossing the cut have weight



Definition ([Benczúr/Karger '00])

A $(1 \pm \epsilon)$ -cut sparsifier of *G* is a weighted subgraph *H* such that, for every cut $(C, V \setminus C)$, the edges $E[C, V \setminus C]$ crossing the cut have weight



Theorem ([Batson, Spielman, Srivastava '09])

Every graph with n nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with *n* nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng '04]

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with *n* nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng '04]

Theorem (Abraham, Durfee, Koutis, K, Peng '16)

There is a dynamic algorithm for maintaining a spectral sparsifier with $O(n\epsilon^{-2}\log n)$ edges in worst-case time $O(\epsilon^{-2}\log^7 n)$ per update.

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with *n* nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng '04]

Theorem (Abraham, Durfee, Koutis, K, Peng '16)

There is a dynamic algorithm for maintaining a spectral sparsifier with $O(n\epsilon^{-2}\log n)$ edges in worst-case time $O(\epsilon^{-2}\log^7 n)$ per update.

First dynamic algorithm for this problem

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with *n* nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Deep Connection to solving SDD linear systems! [Spielman/Teng '04]

Theorem (Abraham, Durfee, Koutis, K, Peng '16)

There is a dynamic algorithm for maintaining a spectral sparsifier with $O(n\epsilon^{-2}\log n)$ edges in worst-case time $O(\epsilon^{-2}\log^7 n)$ per update.

First dynamic algorithm for this problem

Internally uses dynamic spanner with stretch $O(\log n)$

Graph compression

• Mathematically clean framework

Graph compression

- Mathematically clean framework
- Powerful tool in modern algorithm design

Graph compression

- Mathematically clean framework
- Powerful tool in modern algorithm design

My goals:

- Rebuild graph compression results in the dynamic world
- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization

Graph compression

- Mathematically clean framework
- Powerful tool in modern algorithm design

My goals:

- Rebuild graph compression results in the dynamic world
- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization

Thank you!

Closing Words

