
An Update to Dynamic Graph Algorithms

Sebastian Forster, né Krinninger

Paris Lodron University Salzburg

@ACSD 2024

Supported by the EXDIGIT (Excellence in Digital Sciences and Interdisciplinary Technology) project, funded by Land Salzburg
under grant number 20204-WISS/263/6-6022, and the Austrian Science Fund (FWF): P 32863-N. This project has received fund-
ing from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 947702).

Graphs are Everywhere

1

Graphs are Everywhere

1

Graphs are Everywhere

1

Graphs are Everywhere

1

Static Algorithms

Input Output

2

Dynamic Environments

≈ 50% of applications for big graphs are dynamic [Sahu et al. ’17]

3

Dynamic Environments

≈ 50% of applications for big graphs are dynamic [Sahu et al. ’17]

3

Running Time

Goal
Design algorithms that react quickly to changes in the input data

Measurement Mathematical analysis

4

Running Time

Goal
Design algorithms that react quickly to changes in the input data

Measurement Mathematical analysis

4

Warm-Up: Moving Average

Time series: 𝑠1, 𝑠2, … , 𝑠𝑛

Mean of last 𝑘 values:

̄𝑠𝑛,𝑘 =
𝑠𝑛+𝑠𝑛−1+⋯+𝑠𝑛−𝑘+1

𝑘
→ 𝑘 arithmetic operations

Equivalent formula:
̄𝑠𝑛,𝑘 = ̄𝑠𝑛−1,𝑘 +

1
𝑘 (𝑠𝑛 − 𝑠𝑛−𝑘)

→ 3 arithmetic operations

Efficiency gain!

5

Warm-Up: Moving Average

Time series: 𝑠1, 𝑠2, … , 𝑠𝑛

Mean of last 𝑘 values:

̄𝑠𝑛,𝑘 =
𝑠𝑛+𝑠𝑛−1+⋯+𝑠𝑛−𝑘+1

𝑘
→ 𝑘 arithmetic operations

Equivalent formula:
̄𝑠𝑛,𝑘 = ̄𝑠𝑛−1,𝑘 +

1
𝑘 (𝑠𝑛 − 𝑠𝑛−𝑘)

→ 3 arithmetic operations

Efficiency gain!

5

Warm-Up: Moving Average

Time series: 𝑠1, 𝑠2, … , 𝑠𝑛

Mean of last 𝑘 values:

̄𝑠𝑛,𝑘 =
𝑠𝑛+𝑠𝑛−1+⋯+𝑠𝑛−𝑘+1

𝑘
→ 𝑘 arithmetic operations

Equivalent formula:
̄𝑠𝑛,𝑘 = ̄𝑠𝑛−1,𝑘 +

1
𝑘 (𝑠𝑛 − 𝑠𝑛−𝑘)

→ 3 arithmetic operations

Efficiency gain!

5

Status Quo

Success Story:

• Fast dynamic graph algorithms for fundamental, “textbook”
problems: connectivity, shortest paths, matching, …

• Sophisticated mathematical tools and techniques

• Dynamic graph algorithms facilitate breakthroughs in
combinatorial optimization [Chen et al. ’22]

Problem: (Too) little real-world impact

• Complicated algorithms

• Lack of (scalable) implementations

• Practitioners interested in wider array of problems

6

Status Quo

Success Story:

• Fast dynamic graph algorithms for fundamental, “textbook”
problems: connectivity, shortest paths, matching, …

• Sophisticated mathematical tools and techniques

• Dynamic graph algorithms facilitate breakthroughs in
combinatorial optimization [Chen et al. ’22]

Problem: (Too) little real-world impact

• Complicated algorithms

• Lack of (scalable) implementations

• Practitioners interested in wider array of problems

6

Status Quo

Success Story:

• Fast dynamic graph algorithms for fundamental, “textbook”
problems: connectivity, shortest paths, matching, …

• Sophisticated mathematical tools and techniques

• Dynamic graph algorithms facilitate breakthroughs in
combinatorial optimization [Chen et al. ’22]

Problem: (Too) little real-world impact

• Complicated algorithms

• Lack of (scalable) implementations

• Practitioners interested in wider array of problems

6

Towards Dynamic Graph Mining Algorithms

Vision
Systematically transfer technology developed for dynamic graph
algorithms to graph mining and learning domain

Focus on Relevant Problems:

• Centrality

• Clustering

• Pattern (subgraph) detection

• …

Recent survey [Hanauer, Henzinger, Schulz ’22] reveals blind spots

Integrated Pipeline
Algorithm design → Algorithm engineering → Applications

7

Towards Dynamic Graph Mining Algorithms

Vision
Systematically transfer technology developed for dynamic graph
algorithms to graph mining and learning domain

Focus on Relevant Problems:

• Centrality

• Clustering

• Pattern (subgraph) detection

• …

Recent survey [Hanauer, Henzinger, Schulz ’22] reveals blind spots

Integrated Pipeline
Algorithm design → Algorithm engineering → Applications

7

Towards Dynamic Graph Mining Algorithms

Vision
Systematically transfer technology developed for dynamic graph
algorithms to graph mining and learning domain

Focus on Relevant Problems:

• Centrality

• Clustering

• Pattern (subgraph) detection

• …

Recent survey [Hanauer, Henzinger, Schulz ’22] reveals blind spots

Integrated Pipeline
Algorithm design → Algorithm engineering → Applications

7

Towards Dynamic Graph Mining Algorithms

Vision
Systematically transfer technology developed for dynamic graph
algorithms to graph mining and learning domain

Focus on Relevant Problems:

• Centrality

• Clustering

• Pattern (subgraph) detection

• …

Recent survey [Hanauer, Henzinger, Schulz ’22] reveals blind spots

Integrated Pipeline
Algorithm design → Algorithm engineering → Applications

7

Case Study: 𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖

• Prior work for dynamic point sets
[Chan, Gourqin, Sozio ’18] [Bateni
et al. ’23]

8

Case Study: 𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖

• Prior work for dynamic point sets
[Chan, Gourqin, Sozio ’18] [Bateni
et al. ’23]

8

Case Study: 𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖

• Prior work for dynamic point sets
[Chan, Gourqin, Sozio ’18] [Bateni
et al. ’23]

8

Case Study: 𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖

• Prior work for dynamic point sets
[Chan, Gourqin, Sozio ’18] [Bateni
et al. ’23]

8

Case Study: 𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖

• Prior work for dynamic point sets
[Chan, Gourqin, Sozio ’18] [Bateni
et al. ’23]

8

Metric Spaces and Graphs

Definition (Metric on Point Set)

1. Non-Negativity: 𝑑(𝑥, 𝑦) ≥ 0

2. Separation: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦

3. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

4. Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

Pairwise shortest path distances of an undirected graph induce a
metric with nodes as the point set

Question
Are there efficient dynamic constant-factor approximation
algorithms for 𝑘-center if the metric is induced by a dynamically
changing undirected graph?

9

Metric Spaces and Graphs

Definition (Metric on Point Set)

1. Non-Negativity: 𝑑(𝑥, 𝑦) ≥ 0

2. Separation: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦

3. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

4. Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

Pairwise shortest path distances of an undirected graph induce a
metric with nodes as the point set

Question
Are there efficient dynamic constant-factor approximation
algorithms for 𝑘-center if the metric is induced by a dynamically
changing undirected graph?

9

Metric Spaces and Graphs

Definition (Metric on Point Set)

1. Non-Negativity: 𝑑(𝑥, 𝑦) ≥ 0

2. Separation: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦

3. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

4. Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

Pairwise shortest path distances of an undirected graph induce a
metric with nodes as the point set

Question
Are there efficient dynamic constant-factor approximation
algorithms for 𝑘-center if the metric is induced by a dynamically
changing undirected graph?

9

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Dynamic Model

Dynamic Point Sets:

• Point insertions and deletions

• Query access to metric

• Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model

10

Related Work

Static Algorithms:
• Classic 2-approximation algorithms [Gonzalez ’85]

[Hochbaum, Shmoys ’85]
On graphs with 𝑛 nodes and 𝑚 edges: 𝑂̃(𝑘𝑚) time

• State of the art on graphs: 𝑂̃(𝑚) time (randomized)
[Thorup ’01] [Abboud et al. ’23]

Dynamic Point Sets:
• 𝑂̃(𝑘2) update time [Chan, Gourqin, Sozio ’18]
• 𝑂̃(𝑘) update time [Bateni et al. ’23]
• Special cases: [Schmidt, Sohler ’19] [Goranci et al. ’21]
• Consistent 𝑘-center [Lattanzi and Vassilvitskii ’12]

[Fichtenberger et al. ’21] [Łącki et al. ’23] [F and Skarlatos ’24]

Natural goal: Update-time overhead of 𝑂̃(𝑘) compared to dynamic
approximate single-source distances (“SSSP”)

11

Related Work

Static Algorithms:
• Classic 2-approximation algorithms [Gonzalez ’85]

[Hochbaum, Shmoys ’85]
On graphs with 𝑛 nodes and 𝑚 edges: 𝑂̃(𝑘𝑚) time

• State of the art on graphs: 𝑂̃(𝑚) time (randomized)
[Thorup ’01] [Abboud et al. ’23]

Dynamic Point Sets:
• 𝑂̃(𝑘2) update time [Chan, Gourqin, Sozio ’18]
• 𝑂̃(𝑘) update time [Bateni et al. ’23]
• Special cases: [Schmidt, Sohler ’19] [Goranci et al. ’21]
• Consistent 𝑘-center [Lattanzi and Vassilvitskii ’12]

[Fichtenberger et al. ’21] [Łącki et al. ’23] [F and Skarlatos ’24]

Natural goal: Update-time overhead of 𝑂̃(𝑘) compared to dynamic
approximate single-source distances (“SSSP”)

11

Related Work

Static Algorithms:
• Classic 2-approximation algorithms [Gonzalez ’85]

[Hochbaum, Shmoys ’85]
On graphs with 𝑛 nodes and 𝑚 edges: 𝑂̃(𝑘𝑚) time

• State of the art on graphs: 𝑂̃(𝑚) time (randomized)
[Thorup ’01] [Abboud et al. ’23]

Dynamic Point Sets:
• 𝑂̃(𝑘2) update time [Chan, Gourqin, Sozio ’18]
• 𝑂̃(𝑘) update time [Bateni et al. ’23]
• Special cases: [Schmidt, Sohler ’19] [Goranci et al. ’21]
• Consistent 𝑘-center [Lattanzi and Vassilvitskii ’12]

[Fichtenberger et al. ’21] [Łącki et al. ’23] [F and Skarlatos ’24]

Natural goal: Update-time overhead of 𝑂̃(𝑘) compared to dynamic
approximate single-source distances (“SSSP”) 11

Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a fully dynamic (2 + 𝜖)-approximate 𝑘-center algorithm with
worst-case update time

• 𝑂(𝑘𝑛1.529𝜖−2) in unweighted graphs

• 𝑂(𝑘𝑛1.823𝜖−2) in weighted graphs

that is correct against an adaptive adversary.

Update time for fully dynamic (1 + 𝜖)-approximate SSSP:

• 𝑂(𝑛1.529𝜖−2) (unweighted) [v. d. Brand, F, Nazari ’22]
• 𝑂(𝑛1.823𝜖−2) (weighted) [v. d. Brand, Nanongkai ’19]

12

Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a fully dynamic (2 + 𝜖)-approximate 𝑘-center algorithm with
worst-case update time

• 𝑂(𝑘𝑛1.529𝜖−2) in unweighted graphs

• 𝑂(𝑘𝑛1.823𝜖−2) in weighted graphs

that is correct against an adaptive adversary.

Update time for fully dynamic (1 + 𝜖)-approximate SSSP:

• 𝑂(𝑛1.529𝜖−2) (unweighted) [v. d. Brand, F, Nazari ’22]
• 𝑂(𝑛1.823𝜖−2) (weighted) [v. d. Brand, Nanongkai ’19]

12

Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a deterministic decremental (= deletions-only)
(2 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) (over a sequence of Θ(𝑚) updates) for any constant 𝜖.

Update time for decremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[Henzinger, K, Nanongkai ’14] [Bernstein, Probst G., Saranurak ’21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (= insertions-only)
(4 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) that is correct against an oblivious adversary for any constant 𝜖.

Update time for incremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[implicit in Henzinger, K, Nanongkai ’14]

13

Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a deterministic decremental (= deletions-only)
(2 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) (over a sequence of Θ(𝑚) updates) for any constant 𝜖.

Update time for decremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[Henzinger, K, Nanongkai ’14] [Bernstein, Probst G., Saranurak ’21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (= insertions-only)
(4 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) that is correct against an oblivious adversary for any constant 𝜖.

Update time for incremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[implicit in Henzinger, K, Nanongkai ’14]

13

Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a deterministic decremental (= deletions-only)
(2 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) (over a sequence of Θ(𝑚) updates) for any constant 𝜖.

Update time for decremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[Henzinger, K, Nanongkai ’14] [Bernstein, Probst G., Saranurak ’21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (= insertions-only)
(4 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) that is correct against an oblivious adversary for any constant 𝜖.

Update time for incremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[implicit in Henzinger, K, Nanongkai ’14]

13

Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’24)
There is a deterministic decremental (= deletions-only)
(2 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) (over a sequence of Θ(𝑚) updates) for any constant 𝜖.

Update time for decremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[Henzinger, K, Nanongkai ’14] [Bernstein, Probst G., Saranurak ’21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (= insertions-only)
(4 + 𝜖)-approximate 𝑘-center algorithm with amortized update time
𝑘𝑛𝑜(1) that is correct against an oblivious adversary for any constant 𝜖.

Update time for incremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

[implicit in Henzinger, K, Nanongkai ’14]

13

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation

14

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:

• Forward update to distance data
structure

• Initialize 𝐶 = {𝑣} with arbitrary
first center and connect it to 𝑠

• While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:

• Forward update to distance data
structure

• Initialize 𝐶 = {𝑣} with arbitrary
first center and connect it to 𝑠

• While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure

• Initialize 𝐶 = {𝑣} with arbitrary
first center and connect it to 𝑠

• While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠

• While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠
• While |𝐶| < 𝑘, add node 𝑣

maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠
• While |𝐶| < 𝑘, add node 𝑣

maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠
• While |𝐶| < 𝑘, add node 𝑣

maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠
• While |𝐶| < 𝑘, add node 𝑣

maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

15

Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm with
algorithm working against
adaptive adversary

• After every update to graph:
• Forward update to distance data

structure
• Initialize 𝐶 = {𝑣} with arbitrary

first center and connect it to 𝑠
• While |𝐶| < 𝑘, add node 𝑣

maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛)) 15

Outlook: Towards Dynamic Graph Mining Algorithms

Challenges:

• Experimental methodology not fully established

• Widespread use of heuristics in mining and learning domain

• Finding non-industrial applications

Opportunities:

• Real-time data analysis

• Interesting research problems

16

Outlook: Towards Dynamic Graph Mining Algorithms

Challenges:

• Experimental methodology not fully established

• Widespread use of heuristics in mining and learning domain

• Finding non-industrial applications

Opportunities:

• Real-time data analysis

• Interesting research problems

16

Thanks for your attention!

forster@cs.sbg.ac.at

https://bda.cs.plus.ac.at

17

