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Static Algorithms
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Dynamic Environments

~ 50 % of applications for big graphs are dynamic [Sahu et al. *17]
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Warm-Up: Moving Average

Time series: sq,5y,..., S,

Mean of last k values:

_ T e
sn,k - k

— k arithmetic operations

Equivalent formula:

- - 1

Snk = Sn—1k T E(sn - Snfk)
— 3 arithmetic operations

Efficiency gain!
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Success Story:

« Fast dynamic graph algorithms for fundamental, “textbook”

problems: connectivity, shortest paths, matching, ...
« Sophisticated mathematical tools and techniques

« Dynamic graph algorithms facilitate breakthroughs in

combinatorial optimization [Chen et al. *22]

Problem: (Too) little real-world impact
« Complicated algorithms
« Lack of (scalable) implementations

o Practitioners interested in wider array of problems
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Towards Dynamic Graph Mining Algorithms

Vision
Systematically transfer technology developed for dynamic graph

algorithms to graph mining and learning domain

Focus on Relevant Problems:
« Centrality
« Clustering
« Pattern (subgraph) detection

Recent survey [Hanauer, Henzinger, Schulz ’22] reveals blind spots

Integrated Pipeline
Algorithm design — Algorithm engineering — Applications
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Case Study: k-Center Clustering

k-Center Problem
Given a metric space, select k points as set of centers C such that

the maximum distance d(C, v) of any node v to its closest center is

minimized.

+ Assigning each point to its closest
center induces a partition into

clusters

+ Problem is NP-hard to approximate
within a factor of 2 — ¢

« Prior work for dynamic point sets
[Chan, Gourgin, Sozio *18] [Bateni
et al. "23]




Metric Spaces and Graphs

Definition (Metric on Point Set)

—_

. Non-Negativity: d(x,y) >0

2. Separation: d(x,y) =0 if and only if x = y

3. Symmetry: d(x,y) = d(y, x)

4. Triangle Inequality: d(x,z) < d(x,y) +d(y,z)
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Metric Spaces and Graphs

Definition (Metric on Point Set)
1. Non-Negativity: d(x,y) >0
2. Separation: d(x,y) =0 if and only if x = y
3. Symmetry: d(x,y) = d(y, x)
4. Triangle Inequality: d(x,z) < d(x,y) +d(y,z)

Question
Are there efficient dynamic constant-factor approximation
algorithms for k-center if the metric is induced by a dynamically

changing undirected graph?
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Dynamic Model

Dynamic Point Sets: Dynamic Graphs:
- Point insertions and deletions + Edge insertions and deletions
« Query access to metric + Distances not given for free
« Metric extends/reduces + Metric shrinks/expands

Conclusion
Cannot use results for dynamic point sets in a black-box manner

for dynamic graph model
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Related Work

Static Algorithms:
+ Classic 2-approximation algorithms [Gonzalez '85]
[Hochbaum, Shmoys ’85]
On graphs with n nodes and m edges: O(km) time
. State of the art on graphs: O(m) time (randomized)
[Thorup '01] [Abboud et al. "23]

Dynamic Point Sets:
« O(k?) update time [Chan, Gourgin, Sozio 18]
« O(k) update time [Bateni et al. ’23]
« Special cases: [Schmidt, Sohler '19] [Goranci et al. *21]
« Consistent k-center [Lattanzi and Vassilvitskii ’12]
[Fichtenberger et al. *21] [Lacki et al. 23] [F and Skarlatos ’24]

Natural goal: Update-time overhead of O(k) compared to dynamic

approximate single-source distances (“SSSP”) 1



Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos "24)
There is a fully dynamic (2 + €)-approximate k-center algorithm with

worst-case update time
o O(kn'°%€~2) in unweighted graphs
« O(kn'823¢72) in weighted graphs

that is correct against an adaptive adversary.
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There is a fully dynamic (2 + €)-approximate k-center algorithm with

worst-case update time
o O(kn'°%€~2) in unweighted graphs
« O(kn'823¢72) in weighted graphs
that is correct against an adaptive adversary.
Update time for fully dynamic (1 + ¢)-approximate SSSP:

« O(n'°?°¢7?) (unweighted) [v. d. Brand, F, Nazari ’22]
« O(n'®23¢72) (weighted) [v. d. Brand, Nanongkai *19]
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kn°D (over a sequence of ©(m) updates) for any constant e.
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Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos "24)
There is a deterministic decremental (= deletions-only)
(2 + €)-approximate k-center algorithm with amortized update time

kn°D (over a sequence of ©(m) updates) for any constant e.

Update time for decremental (1 + €)-approximate SSSP: n°(!)
[Henzinger, K, Nanongkai *14] [Bernstein, Probst G., Saranurak ’21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (= insertions-only)
(4 + €)-approximate k-center algorithm with amortized update time

kn®Y that is correct against an oblivious adversary for any constant e.

Update time for incremental (1 + €)-approximate SSSP: o)
[implicit in Henzinger, K, Nanongkai ’14]
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Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez '85]
1. Initialize C = {v} with arbitrary first
center

2. While |C| < k, add node v
maximizing d(C,v) to C

This gives a 2-approximation

If d(C,v) is within factor 1 + € of maximum, this gives

(2 + €)-approximation
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Fully Dynamic Algorithm: Simulating Gonzalez’s Algorithm

« Add artificial “super-source” s

« Maintain (1 + €)-approximate
single-source distances from s with .
a fully dynamic algorithm with
algorithm working against
adaptive adversary

- After every update to graph:

« Forward update to distance data

structure
« Initialize C = {v} with arbitrary
first center and connect it to s
« While |C] < k, add node v
maximizing d(s, v) to C and
connect ittos

Update Time: O(k - Usssp(n)) 15
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Outlook: Towards Dynamic Graph Mining Algorithms

Challenges:
« Experimental methodology not fully established
+ Widespread use of heuristics in mining and learning domain

« Finding non-industrial applications

Opportunities:
+ Real-time data analysis

o Interesting research problems
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