An Update to Dynamic Graph Algorithms

Sebastian Forster, né Krinninger Paris Lodron University Salzburg

@ACSD 2024

Supported by the EXDIGIT (Excellence in Digital Sciences and Interdisciplinary Technology) project, funded by Land Salzburg under grant number 20204-WISS/263/6-6022, and the Austrian Science Fund (FWF): P 32863-N. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 947702).

l

Static Algorithms

Dynamic Environments

Dynamic Environments

 $\approx 50\,\%$ of applications for big graphs are dynamic [Sahu et al. '17]

Running Time

Goal

Design algorithms that react $\boldsymbol{quickly}$ to changes in the input data

Running Time

Goal

Design algorithms that react quickly to changes in the input data

Measurement

Mathematical analysis

Warm-Up: Moving Average

Time series: s_1, s_2, \dots, s_n

Mean of last *k* values:

$$\bar{s}_{n,k} = \frac{s_n + s_{n-1} + \dots + s_{n-k+1}}{k}$$

 $\rightarrow k$ arithmetic operations

Warm-Up: Moving Average

Time series: s_1, s_2, \dots, s_n

Mean of last *k* values:

$$\bar{s}_{n,k} = \frac{s_n + s_{n-1} + \dots + s_{n-k+1}}{k}$$

 $\rightarrow k$ arithmetic operations

Equivalent formula:

$$\bar{s}_{n,k} = \bar{s}_{n-1,k} + \frac{1}{k}(s_n - s_{n-k})$$

Warm-Up: Moving Average

Time series: $s_1, s_2, ..., s_n$

Mean of last k values:

$$\bar{s}_{n,k} = \frac{s_n + s_{n-1} + \dots + s_{n-k+1}}{k}$$

 $\rightarrow k$ arithmetic operations

Equivalent formula:

$$\bar{s}_{n,k} = \bar{s}_{n-1,k} + \frac{1}{k}(s_n - s_{n-k})$$

 \rightarrow 3 arithmetic operations

Efficiency gain!

Status Quo

Success Story:

- Fast dynamic graph algorithms for fundamental, "textbook" problems: connectivity, shortest paths, matching, ...
- Sophisticated mathematical tools and techniques
- Dynamic graph algorithms facilitate breakthroughs in combinatorial optimization [Chen et al. '22]

Status Quo

Success Story:

- Fast dynamic graph algorithms for fundamental, "textbook" problems: connectivity, shortest paths, matching, ...
- Sophisticated mathematical tools and techniques
- Dynamic graph algorithms facilitate breakthroughs in combinatorial optimization [Chen et al. '22]

Problem: (Too) little real-world impact

Status Quo

Success Story:

- Fast dynamic graph algorithms for fundamental, "textbook" problems: connectivity, shortest paths, matching, ...
- Sophisticated mathematical tools and techniques
- Dynamic graph algorithms facilitate breakthroughs in combinatorial optimization [Chen et al. '22]

Problem: (Too) little real-world impact

- Complicated algorithms
- · Lack of (scalable) implementations
- Practitioners interested in wider array of problems

Vision

Systematically transfer technology developed for dynamic graph algorithms to graph mining and learning domain

Vision

Systematically transfer technology developed for dynamic graph algorithms to graph mining and learning domain

Focus on Relevant Problems:

- Centrality
- Clustering
- Pattern (subgraph) detection
- ...

Recent survey [Hanauer, Henzinger, Schulz '22] reveals blind spots

Vision

Systematically transfer technology developed for dynamic graph algorithms to graph mining and learning domain

Focus on Relevant Problems:

- Centrality
- Clustering
- Pattern (subgraph) detection
- ...

Recent survey [Hanauer, Henzinger, Schulz '22] reveals blind spots

Vision

Systematically transfer technology developed for dynamic graph algorithms to graph mining and learning domain

Focus on Relevant Problems:

- · Centrality
- Clustering
- · Pattern (subgraph) detection
- ...

Recent survey [Hanauer, Henzinger, Schulz '22] reveals blind spots

Integrated Pipeline

 $Algorithm\ design \rightarrow Algorithm\ engineering \rightarrow Applications$

k-Center Problem

Given a metric space, select k points as set of centers C such that the maximum distance d(C, v) of any node v to its closest center is minimized.

k-Center Problem

Given a metric space, select k points as set of centers C such that the maximum distance d(C, v) of any node v to its closest center is minimized.

k-Center Problem

Given a metric space, select k points as set of centers C such that the maximum distance d(C, v) of any node v to its closest center is minimized.

 Assigning each point to its closest center induces a partition into clusters

k-Center Problem

Given a metric space, select k points as set of centers C such that the maximum distance d(C, v) of any node v to its closest center is minimized.

- Assigning each point to its closest center induces a partition into clusters
- Problem is NP-hard to approximate within a factor of 2ϵ

k-Center Problem

Given a metric space, select k points as set of centers C such that the maximum distance d(C, v) of any node v to its closest center is minimized.

- Assigning each point to its closest center induces a partition into clusters
- Problem is NP-hard to approximate within a factor of 2ϵ
- Prior work for dynamic point sets [Chan, Gourqin, Sozio '18] [Bateni et al. '23]

Metric Spaces and Graphs

Definition (Metric on Point Set)

- 1. Non-Negativity: $d(x, y) \ge 0$
- 2. **Separation:** d(x, y) = 0 if and only if x = y
- 3. **Symmetry:** d(x, y) = d(y, x)
- 4. Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$

Metric Spaces and Graphs

Definition (Metric on Point Set)

- 1. Non-Negativity: $d(x, y) \ge 0$
- 2. **Separation:** d(x, y) = 0 if and only if x = y
- 3. **Symmetry:** d(x, y) = d(y, x)
- 4. Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$

Pairwise shortest path distances of an undirected graph induce a metric with nodes as the point set

9

Metric Spaces and Graphs

Definition (Metric on Point Set)

- 1. Non-Negativity: $d(x, y) \ge 0$
- 2. **Separation:** d(x, y) = 0 if and only if x = y
- 3. **Symmetry:** d(x, y) = d(y, x)
- 4. Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$

Pairwise shortest path distances of an undirected graph induce a metric with nodes as the point set

Question

Are there efficient dynamic constant-factor approximation algorithms for k-center if the metric is induced by a dynamically changing undirected graph?

9

Dynamic Point Sets:

· Point insertions and deletions

Dynamic Point Sets:

· Point insertions and deletions

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Graphs:

• Edge insertions and deletions

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Graphs:

- Edge insertions and deletions
- Distances not given for free

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Graphs:

- Edge insertions and deletions
- Distances not given for free
- Metric shrinks/expands

Dynamic Model

Dynamic Point Sets:

- · Point insertions and deletions
- Query access to metric
- Metric extends/reduces

Dynamic Graphs:

- Edge insertions and deletions
- Distances not given for free
- Metric shrinks/expands

Conclusion

Cannot use results for dynamic point sets in a black-box manner for dynamic graph model

Related Work

Static Algorithms:

- Classic 2-approximation algorithms [Gonzalez '85] [Hochbaum, Shmoys '85] On graphs with n nodes and m edges: $\tilde{O}(km)$ time
- State of the art on graphs: $\tilde{O}(m)$ time (randomized) [Thorup '01] [Abboud et al. '23]

Related Work

Static Algorithms:

- Classic 2-approximation algorithms [Gonzalez '85] [Hochbaum, Shmoys '85] On graphs with n nodes and m edges: $\tilde{O}(km)$ time
- State of the art on graphs: $\tilde{O}(m)$ time (randomized) [Thorup '01] [Abboud et al. '23]

Dynamic Point Sets:

- $\tilde{O}(k^2)$ update time [Chan, Gourqin, Sozio '18]
- $\tilde{O}(k)$ update time [Bateni et al. '23]
- Special cases: [Schmidt, Sohler '19] [Goranci et al. '21]
- Consistent k-center [Lattanzi and Vassilvitskii '12]
 [Fichtenberger et al. '21] [Łącki et al. '23] [F and Skarlatos '24]

Related Work

Static Algorithms:

- Classic 2-approximation algorithms [Gonzalez '85] [Hochbaum, Shmoys '85] On graphs with n nodes and m edges: $\tilde{O}(km)$ time
- State of the art on graphs: $\tilde{O}(m)$ time (randomized) [Thorup '01] [Abboud et al. '23]

Dynamic Point Sets:

- $\tilde{O}(k^2)$ update time [Chan, Gourqin, Sozio '18]
- $\tilde{O}(k)$ update time [Bateni et al. '23]
- Special cases: [Schmidt, Sohler '19] [Goranci et al. '21]
- Consistent k-center [Lattanzi and Vassilvitskii '12]
 [Fichtenberger et al. '21] [Łącki et al. '23] [F and Skarlatos '24]

Natural goal: Update-time overhead of $\tilde{O}(k)$ compared to dynamic approximate single-source distances ("SSSP")

Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a fully dynamic $(2 + \epsilon)$ -approximate k-center algorithm with worst-case update time

- $O(kn^{1.529}\epsilon^{-2})$ in unweighted graphs
- $O(kn^{1.823}\epsilon^{-2})$ in weighted graphs

that is correct against an adaptive adversary.

Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a fully dynamic $(2 + \epsilon)$ -approximate k-center algorithm with worst-case update time

- $O(kn^{1.529}\epsilon^{-2})$ in unweighted graphs
- $O(kn^{1.823}\epsilon^{-2})$ in weighted graphs

that is correct against an adaptive adversary.

Update time for fully dynamic $(1 + \epsilon)$ -approximate SSSP:

- $O(n^{1.529}\epsilon^{-2})$ (unweighted) [v. d. Brand, **F**, Nazari '22]
- $O(n^{1.823}\epsilon^{-2})$ (weighted) [v. d. Brand, Nanongkai '19]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a deterministic decremental (= deletions-only) $(2 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ (over a sequence of $\Theta(m)$ updates) for any constant ϵ .

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a deterministic decremental (= deletions-only) $(2 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ (over a sequence of $\Theta(m)$ updates) for any constant ϵ .

Update time for decremental $(1 + \epsilon)$ -approximate SSSP: $n^{o(1)}$ [Henzinger, **K**, Nanongkai '14] [Bernstein, Probst G., Saranurak '21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a deterministic decremental (= deletions-only) $(2 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ (over a sequence of $\Theta(m)$ updates) for any constant ϵ .

Update time for decremental $(1 + \epsilon)$ -approximate SSSP: $n^{o(1)}$ [Henzinger, **K**, Nanongkai '14] [Bernstein, Probst G., Saranurak '21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '23)

There is a randomized incremental (= insertions-only) $(4 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ that is correct against an oblivious adversary for any constant ϵ .

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '24)

There is a deterministic decremental (= deletions-only) $(2 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ (over a sequence of $\Theta(m)$ updates) for any constant ϵ .

Update time for decremental $(1 + \epsilon)$ -approximate SSSP: $n^{o(1)}$ [Henzinger, **K**, Nanongkai '14] [Bernstein, Probst G., Saranurak '21]

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos '23)

There is a randomized incremental (= insertions-only) $(4 + \epsilon)$ -approximate k-center algorithm with amortized update time $kn^{o(1)}$ that is correct against an oblivious adversary for any constant ϵ .

Update time for incremental $(1 + \epsilon)$ -approximate SSSP: $n^{o(1)}$ [implicit in Henzinger, **K**, Nanongkai '14]

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

Gonzalez's Algorithm [Gonzalez '85]

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

This gives a 2-approximation

Gonzalez's Algorithm [Gonzalez '85]

- 1. Initialize $C = \{v\}$ with arbitrary first center
- 2. While |C| < k, add node v maximizing d(C, v) to C

This gives a 2-approximation

If d(C, v) is within factor $1 + \epsilon$ of maximum, this gives $(2 + \epsilon)$ -approximation

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- After every update to graph:
 - Forward update to distance data structure

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s
 - While |C| < k, add node v maximizing d(s, v) to C and connect it to s

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s
 - While |C| < k, add node v maximizing d(s, v) to C and connect it to s

- Add artificial "super-source" s
- Maintain $(1 + \epsilon)$ -approximate single-source distances from s with a fully dynamic algorithm

- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s
 - While |C| < k, add node v maximizing d(s, v) to C and connect it to s

- Add artificial "super-source" s
- Maintain (1 + ε)-approximate single-source distances from s with a fully dynamic algorithm with algorithm working against adaptive adversary
- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s
 - While |C| < k, add node v maximizing d(s, v) to C and connect it to s

- Add artificial "super-source" s
- Maintain (1 + ε)-approximate single-source distances from s with a fully dynamic algorithm with algorithm working against adaptive adversary
- After every update to graph:
 - Forward update to distance data structure
 - Initialize C = {v} with arbitrary first center and connect it to s
 - While |C| < k, add node v maximizing d(s, v) to C and connect it to s

Update Time: $O(k \cdot U_{SSSP}(n))$

Outlook: Towards Dynamic Graph Mining Algorithms

Challenges:

- · Experimental methodology not fully established
- · Widespread use of heuristics in mining and learning domain
- Finding non-industrial applications

Outlook: Towards Dynamic Graph Mining Algorithms

Challenges:

- · Experimental methodology not fully established
- · Widespread use of heuristics in mining and learning domain
- Finding non-industrial applications

Opportunities:

- · Real-time data analysis
- Interesting research problems

Thanks for your attention!

forster@cs.sbg.ac.at

https://bda.cs.plus.ac.at