
Near-Optimal Approximate Shortest Paths and
Transshipment in Distributed and Streaming Models

Sebastian Krinninger

University of Vienna
→ University of Salzburg

joint work with

Ruben Becker Andreas Karrenbauer Christoph Lenzen
MPI Saarbrücken MPI Saarbrücken MPI Saarbrücken

1 / 22



Approximate Single-Source Shortest Paths

Our (1 + ε)-approx

Previous best

CONGEST (
√
n + D) · poly(log n, ε)

(
√
n + D) · 2O(

√
log n log (ε−1 log n))

rounds

rounds1

Cong. Clique poly(log n, ε) 2O(
√
log n log (ε−1 log n))

rounds rounds

2

Streaming poly(log n, ε) passes (2 + 1/ε)O(
√
log n log log n) passes

O(n log n) space O(n log2 n) space3

Comments:
Undirected graphs with weights ∈ {1, 2, . . . , poly(n)}

D = Diameter, n = #nodes

CONGEST lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

1

[Henzinger/K/Nanongkai ’16]

2

[Henzinger/K/Nanongkai ’16]

3

[Elkin/Neiman ’16]

2 / 22



Approximate Single-Source Shortest Paths

Our (1 + ε)-approx Previous best
CONGEST (

√
n + D) · poly(log n, ε) (

√
n + D) · 2O(

√
log n log (ε−1 log n))

rounds rounds1

Cong. Clique poly(log n, ε) 2O(
√
log n log (ε−1 log n))

rounds rounds

2

Streaming poly(log n, ε) passes (2 + 1/ε)O(
√
log n log log n) passes

O(n log n) space O(n log2 n) space3

Comments:
Undirected graphs with weights ∈ {1, 2, . . . , poly(n)}

D = Diameter, n = #nodes

CONGEST lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

1[Henzinger/K/Nanongkai ’16]
2

[Henzinger/K/Nanongkai ’16]

3

[Elkin/Neiman ’16]

2 / 22



Approximate Single-Source Shortest Paths

Our (1 + ε)-approx Previous best
CONGEST (

√
n + D) · poly(log n, ε) (

√
n + D) · 2O(

√
log n log (ε−1 log n))

rounds rounds1

Cong. Clique poly(log n, ε) 2O(
√
log n log (ε−1 log n))

rounds rounds2

Streaming poly(log n, ε) passes (2 + 1/ε)O(
√
log n log log n) passes

O(n log n) space O(n log2 n) space3

Comments:
Undirected graphs with weights ∈ {1, 2, . . . , poly(n)}

D = Diameter, n = #nodes

CONGEST lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

1[Henzinger/K/Nanongkai ’16]
2[Henzinger/K/Nanongkai ’16]
3

[Elkin/Neiman ’16]

2 / 22



Approximate Single-Source Shortest Paths

Our (1 + ε)-approx Previous best
CONGEST (

√
n + D) · poly(log n, ε) (

√
n + D) · 2O(

√
log n log (ε−1 log n))

rounds rounds1

Cong. Clique poly(log n, ε) 2O(
√
log n log (ε−1 log n))

rounds rounds2

Streaming poly(log n, ε) passes (2 + 1/ε)O(
√
log n log log n) passes

O(n log n) space O(n log2 n) space3

Comments:
Undirected graphs with weights ∈ {1, 2, . . . , poly(n)}

D = Diameter, n = #nodes

CONGEST lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

1[Henzinger/K/Nanongkai ’16]
2[Henzinger/K/Nanongkai ’16]
3[Elkin/Neiman ’16]

2 / 22



Approximate Single-Source Shortest Paths

Our (1 + ε)-approx Exact computation
CONGEST (

√
n + D) · poly(log n, ε) n5/6 + D1/3(n log n)2/3

rounds rounds1

Cong. Clique poly(log n, ε) O(n0.158)

rounds rounds2

Streaming poly(log n, ε) passes O( nk ) passes
O(n log n) space O(nk) space3

Comments:
Undirected graphs with weights ∈ {1, 2, . . . , poly(n)}

D = Diameter, n = #nodes

CONGEST lower bound: Ω̃(
√
n + Diam) rounds [Das Sarma et al ’11]

1[Elkin ’17]
2[Censor-Hillel et al. ’15]
3[Elkin ’17]

2 / 22



Broadcast Congested Clique

Model:
Network topology: clique on n nodes
Synchronous rounds (global clock)
In each round, every node sends one message to all other nodes
Message size O(log n)
Local computation is free

3 / 22



Problem Statement

Initially: Every node knows weight of its incident edges and whether it
is the source or not

Finally: Every node knows its approximate distance to the source

Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai ’16]

t rounds in Broadcast Congested Clique model→ Õ(t · (
√
n + Diam)) rounds

in CONGEST model

4 / 22



Problem Statement

Initially: Every node knows weight of its incident edges and whether it
is the source or not

Finally: Every node knows its approximate distance to the source

Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai ’16]

t rounds in Broadcast Congested Clique model→ Õ(t · (
√
n + Diam)) rounds

in CONGEST model

4 / 22



Problem Statement

Initially: Every node knows weight of its incident edges and whether it
is the source or not

Finally: Every node knows its approximate distance to the source

Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai ’16]

t rounds in Broadcast Congested Clique model→ Õ(t · (
√
n + Diam)) rounds

in CONGEST model

4 / 22



Combinatorial Approach

5 / 22



Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH(u, v) ≤ k · distG(u, v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k

Application: Running time T (m, n) ⇒ T (n1+1/k , n)

6 / 22



Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH(u, v) ≤ k · distG(u, v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k

Application: Running time T (m, n) ⇒ T (n1+1/k , n)

6 / 22



Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH(u, v) ≤ k · distG(u, v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k

Application: Running time T (m, n) ⇒ T (n1+1/k , n)

6 / 22



Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH(u, v) ≤ k · distG(u, v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k

Application: Running time T (m, n) ⇒ T (n1+1/k , n)

6 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

Parallel: m1+o(1) work with no(1) depth [Cohen ’94]

Congested Clique: no(1) rounds [Henzinger/K/Nanongkai ’16]

Streaming: no(1) passes with n1+o(1) space [HKN ’16, Elkin/Neiman ’16]

Incremental/Decremental m1+o(1) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Fact: Every graph has a (no(1), ε)-hop set of size n1+o(1) [Cohen ’94] (for
ε ≥ 1/polylogn)

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Fact: Every graph has a (no(1), ε)-hop set of size n1+o(1) [Cohen ’94] (for
ε ≥ 1/polylogn)

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Fact: Every graph has a (no(1), ε)-hop set of size n1+o(1) [Cohen ’94] (for
ε ≥ 1/polylogn)

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

Parallel: m1+o(1) work with no(1) depth [Cohen ’94]

Congested Clique: no(1) rounds [Henzinger/K/Nanongkai ’16]

Streaming: no(1) passes with n1+o(1) space [HKN ’16, Elkin/Neiman ’16]

Incremental/Decremental m1+o(1) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

Parallel: m1+o(1) work with no(1) depth [Cohen ’94]

Congested Clique: no(1) rounds [Henzinger/K/Nanongkai ’16]

Streaming: no(1) passes with n1+o(1) space [HKN ’16, Elkin/Neiman ’16]

Incremental/Decremental m1+o(1) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set

7 / 22



Sparsification II: Hop Sets

Definition
An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ε)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

Parallel: m1+o(1) work with no(1) depth [Cohen ’94]

Congested Clique: no(1) rounds [Henzinger/K/Nanongkai ’16]

Streaming: no(1) passes with n1+o(1) space [HKN ’16, Elkin/Neiman ’16]

Incremental/Decremental m1+o(1) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set

7 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

8 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

8 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

8 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

Hopset analysis of spanner/emulator in [Thorup/Zwick ’06]

8 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

8 / 22



Hop Sets: Approaching Optimality
Authors Stretch α Hopbound h Size
[Baseline] 1 1 O(n2)

[Klein/Subramanian ’97] 1 O(n log nt ) O(t2)

[Shi/Spencer ’99] 1 O(nt ) O(nt)

[Cohen’94] 1 + ε (
log n
ε )

O(log k) O(n1+ 1
k log n)

[Bernstein’09] 1 + ε O( 3ε )
k log n O(kn1+ 1

k )

[Elkin/Neiman’16] 1 + ε (
log k
ε )

O(log k) O(n1+ 1
k log n log k)

[Elkin/Neiman’17] 1 + ε O( k+1
ε )

k+1 O(n1+ 1
2k+1−1 )

[Huang/Pe�ie’17] 1 + ε O( kε )
k O(n1+ 1

2k+1−1 )

[Abboud/Bodwin/Pe�ie’16] 1 + ε Ωk(
1
ε )

k n1+ 1
2k−1

−δ

⇒ Cannot have α = 1 + ε , h = poly(1/ε) and size n · polylog(n).

No further (significant) algorithmic improvements by be�er hop sets :(

8 / 22



It was too good to be true. . .

9 / 22



Beyond Hop Sets

10 / 22



Our Approach

Gradient Descent

11 / 22



Our Approach

Gradient Descent

11 / 22



Problem Formulation

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View
Given demand b(v) for each node v , find a flow x(e) that:

meets the demands:
∑

e=(u,v)∈E

x(e) = b(v) +
∑

e=(v,u)∈E

x(e) for every node v

and minimizes
∑
e∈E

w(e) · x(e).

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize ‖Wx ‖1 s.t. Ax = b

SSSP: source has demand −(n − 1), other nodes have demand 1

12 / 22



Problem Formulation

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View
Given demand b(v) for each node v , find a flow x(e) that:

meets the demands:
∑

e=(u,v)∈E

x(e) = b(v) +
∑

e=(v,u)∈E

x(e) for every node v

and minimizes
∑
e∈E

w(e) · x(e).

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize ‖Wx ‖1 s.t. Ax = b

SSSP: source has demand −(n − 1), other nodes have demand 1

12 / 22



Problem Formulation

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View
Given demand b(v) for each node v , find a flow x(e) that:

meets the demands:
∑

e=(u,v)∈E

x(e) = b(v) +
∑

e=(v,u)∈E

x(e) for every node v

and minimizes
∑
e∈E

w(e) · x(e).

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize ‖Wx ‖1 s.t. Ax = b

SSSP: source has demand −(n − 1), other nodes have demand 1

12 / 22



Problem Formulation

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View
Given demand b(v) for each node v , find a flow x(e) that:

meets the demands:
∑

e=(u,v)∈E

x(e) = b(v) +
∑

e=(v,u)∈E

x(e) for every node v

and minimizes
∑
e∈E

w(e) · x(e).

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize ‖Wx ‖1 s.t. Ax = b

SSSP: source has demand −(n − 1), other nodes have demand 1

12 / 22



Problem Formulation

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View
Given demand b(v) for each node v , find a flow x(e) that:

meets the demands:
∑

e=(u,v)∈E

x(e) = b(v) +
∑

e=(v,u)∈E

x(e) for every node v

and minimizes
∑
e∈E

w(e) · x(e).

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize ‖Wx ‖1 s.t. Ax = b

SSSP: source has demand −(n − 1), other nodes have demand 1
12 / 22



Reformulation

LP Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t.



W−1ATy



∞
≤ 1

Maximize node potentials restricting stretch:
|y(u) − y(v)|/w(e) ≤ 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize



W−1ATπ



∞

s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Goal: minimize Φβ (π ) := lseβ (W

−1ATπ ) s.t. bTπ = 1

13 / 22



Reformulation

LP Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t.



W−1ATy



∞
≤ 1

Maximize node potentials restricting stretch:
|y(u) − y(v)|/w(e) ≤ 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize



W−1ATπ



∞

s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Goal: minimize Φβ (π ) := lseβ (W

−1ATπ ) s.t. bTπ = 1

13 / 22



Reformulation

LP Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t.



W−1ATy



∞
≤ 1

Maximize node potentials restricting stretch:
|y(u) − y(v)|/w(e) ≤ 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize



W−1ATπ



∞

s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Goal: minimize Φβ (π ) := lseβ (W

−1ATπ ) s.t. bTπ = 1

13 / 22



Reformulation

LP Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t.



W−1ATy



∞
≤ 1

Maximize node potentials restricting stretch:
|y(u) − y(v)|/w(e) ≤ 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize



W−1ATπ



∞

s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))

Goal: minimize Φβ (π ) := lseβ (W
−1ATπ ) s.t. bTπ = 1

13 / 22



Reformulation

LP Formulation

Primal: minimize ‖Wx ‖1 s.t. Ax = b
Dual: maximize bTy s.t.



W−1ATy



∞
≤ 1

Maximize node potentials restricting stretch:
|y(u) − y(v)|/w(e) ≤ 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize



W−1ATπ



∞

s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Goal: minimize Φβ (π ) := lseβ (W

−1ATπ ) s.t. bTπ = 1
13 / 22



So�-max approximation

‖x ‖∞ (where v ∈ Rn)

⇒

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))

Additive approximation:

‖x ‖∞ ≤ lseβ (x) ≤ ‖x ‖∞ +
ln n
β

Lipschitz smoothness:

∇ lseβ (x) − ∇ lseβ (y)

1 ≤ β ‖x − y ‖∞

Intuition: Trade o� quality of approximation and smoothness

14 / 22



So�-max approximation

‖x ‖∞ (where v ∈ Rn)

⇒

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Additive approximation:

‖x ‖∞ ≤ lseβ (x) ≤ ‖x ‖∞ +
ln n
β

Lipschitz smoothness:

∇ lseβ (x) − ∇ lseβ (y)

1 ≤ β ‖x − y ‖∞

Intuition: Trade o� quality of approximation and smoothness

14 / 22



So�-max approximation

‖x ‖∞ (where v ∈ Rn)

⇒

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Additive approximation:

‖x ‖∞ ≤ lseβ (x) ≤ ‖x ‖∞ +
ln n
β

Lipschitz smoothness:

∇ lseβ (x) − ∇ lseβ (y)

1 ≤ β ‖x − y ‖∞

Intuition: Trade o� quality of approximation and smoothness

14 / 22



So�-max approximation

‖x ‖∞ (where v ∈ Rn)

⇒

lseβ (x) :=
1
β
ln

( ∑
1≤i≤n

(
eβxi + e−βxi

))
Additive approximation:

‖x ‖∞ ≤ lseβ (x) ≤ ‖x ‖∞ +
ln n
β

Lipschitz smoothness:

∇ lseβ (x) − ∇ lseβ (y)

1 ≤ β ‖x − y ‖∞

Intuition: Trade o� quality of approximation and smoothness
14 / 22



15 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Convexity: f (y) ≥ f (x) + ∇f (x)T (y − x)

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)

= ∇Φβ (π )
Th −

(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Chain rule: ∇Φβ (π ) = AW−1∇ lseβ (W
−1ATπ )

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Hölder: xTy ≤ ‖x ‖p ‖y ‖q for 1
p +

1
q = 1

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Lipschitz:


∇ lseβ (x) − ∇ lseβ (y)

1 ≤ β ‖x − y ‖∞

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).

Key insight: α-approximation with α = O(log n) is good enough
⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)

16 / 22



Generic Update Step

Bounding improvement in objective for generic update π ′ = π − h:

Φβ (π ) − Φβ (π − h)

≥ ∇Φβ (π − h)
Th

= ∇Φβ (π )
Th −

(
∇Φβ (π )

Th − ∇Φβ (π − h)
Th

)
= ∇Φβ (π )

Th −
(
∇ lseβ (W

−1ATπ ) − ∇ lseβ (W
−1AT (π − h))

)T
W−1ATh

≥ ∇Φβ (π )
Th −



∇ lseβ (W−1ATπ ) − ∇ lseβ (W
−1AT (π − h))




1



W−1ATh



∞

≥ ∇Φβ (π )
Th − β



W−1ATh


2
∞

Suggests to compute h by solving

max{∇Φβ (π )
Th :



W−1ATh



∞
≤ 1}

Another transshipment problem with demand vector ∇Φβ (π ).
Key insight: α-approximation with α = O(log n) is good enough

⇒ Solve on spanner with stretch α = log n of size O(n log n) (“oracle”)
16 / 22



Gradient Descent Algorithm
repeat

while 4 ln(4m)
εβ ≥ Φβ (π ) do β ← 5

4β .

b̃← PT∇Φβ (π ), where P ← I − πbT

h̃← α-approximation of max{b̃Th :


W−1ATh




∞
≤ 1}

δ ← b̃T h̃
‖W−1ATPh̃‖∞

if δ > ε
8α then π ← π − δ

2β ‖W−1ATPh̃‖∞
Ph̃.

until δ ≤ ε
8α

Details:
π must stay feasible (projection onto bTπ = 1)
β needs to be in the right range

Theorem
Given an α -approximate shortest transshipment oracle, one can compute primal
solution x and dual solution y such that ‖Wx ‖1 ≤ (1 + ε)b

Ty with
(ε−3α2 log n logα) oracle calls.

17 / 22



Gradient Descent Algorithm
repeat

while 4 ln(4m)
εβ ≥ Φβ (π ) do β ← 5

4β .

b̃← PT∇Φβ (π ), where P ← I − πbT

h̃← α-approximation of max{b̃Th :


W−1ATh




∞
≤ 1}

δ ← b̃T h̃
‖W−1ATPh̃‖∞

if δ > ε
8α then π ← π − δ

2β ‖W−1ATPh̃‖∞
Ph̃.

until δ ≤ ε
8α

Details:
π must stay feasible (projection onto bTπ = 1)
β needs to be in the right range

Theorem
Given an α -approximate shortest transshipment oracle, one can compute primal
solution x and dual solution y such that ‖Wx ‖1 ≤ (1 + ε)b

Ty with
(ε−3α2 log n logα) oracle calls.

17 / 22



Gradient Descent Algorithm
repeat

while 4 ln(4m)
εβ ≥ Φβ (π ) do β ← 5

4β .

b̃← PT∇Φβ (π ), where P ← I − πbT

h̃← α-approximation of max{b̃Th :


W−1ATh




∞
≤ 1}

δ ← b̃T h̃
‖W−1ATPh̃‖∞

if δ > ε
8α then π ← π − δ

2β ‖W−1ATPh̃‖∞
Ph̃.

until δ ≤ ε
8α

Details:
π must stay feasible (projection onto bTπ = 1)
β needs to be in the right range

Theorem
Given an α -approximate shortest transshipment oracle, one can compute primal
solution x and dual solution y such that ‖Wx ‖1 ≤ (1 + ε)b

Ty with
(ε−3α2 log n logα) oracle calls.

17 / 22



Implementation in Brodcast Congested Clique

1 Evaluate Gradient:
I Evaluate (∇Φβ (π ))v locally at each node v
I (∇Φβ (π ))v is a function of π and weight of edges incident to v

(“edge stretches under current node potentials”)
I Constant #rounds: Make π and (∇Φβ (π )) global knowledge

2 Oracle call:
I Initially compute spanner in O(log n) rounds [Baswana/Sen ’03]
I Spanner then is global knowledge (size O(n log n))
I At oracle call, make gradient global knowledge (size O(n))
I Each node can internally compute solution on spanner

18 / 22



Implementation in Brodcast Congested Clique

1 Evaluate Gradient:
I Evaluate (∇Φβ (π ))v locally at each node v
I (∇Φβ (π ))v is a function of π and weight of edges incident to v

(“edge stretches under current node potentials”)
I Constant #rounds: Make π and (∇Φβ (π )) global knowledge

2 Oracle call:
I Initially compute spanner in O(log n) rounds [Baswana/Sen ’03]
I Spanner then is global knowledge (size O(n log n))
I At oracle call, make gradient global knowledge (size O(n))
I Each node can internally compute solution on spanner

18 / 22



Are we done?

19 / 22



Approximate SSSP

1 Black-box reduction from SSSP to shortest transshipment only for exact
solutions

2 Transshipment will only guarantee (1 + ε)-approximation on average
3 How to obtain per-node guarantee:

I Solve with increased precision
I Inspect gradient to identify close-to-optimal nodes
I Repeat transshipment for “bad” nodes only
I Analysis: Total “mass” reduced by constant fraction in each run

Theorem
We can compute a (1 + ε)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ‖w ‖∞) calls to our gradient descent algorithm
with precision ε ′ = Ω(ε3/(α2 log n)).

20 / 22



Approximate SSSP

1 Black-box reduction from SSSP to shortest transshipment only for exact
solutions

2 Transshipment will only guarantee (1 + ε)-approximation on average

3 How to obtain per-node guarantee:
I Solve with increased precision
I Inspect gradient to identify close-to-optimal nodes
I Repeat transshipment for “bad” nodes only
I Analysis: Total “mass” reduced by constant fraction in each run

Theorem
We can compute a (1 + ε)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ‖w ‖∞) calls to our gradient descent algorithm
with precision ε ′ = Ω(ε3/(α2 log n)).

20 / 22



Approximate SSSP

1 Black-box reduction from SSSP to shortest transshipment only for exact
solutions

2 Transshipment will only guarantee (1 + ε)-approximation on average
3 How to obtain per-node guarantee:

I Solve with increased precision
I Inspect gradient to identify close-to-optimal nodes
I Repeat transshipment for “bad” nodes only
I Analysis: Total “mass” reduced by constant fraction in each run

Theorem
We can compute a (1 + ε)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ‖w ‖∞) calls to our gradient descent algorithm
with precision ε ′ = Ω(ε3/(α2 log n)).

20 / 22



Approximate SSSP

1 Black-box reduction from SSSP to shortest transshipment only for exact
solutions

2 Transshipment will only guarantee (1 + ε)-approximation on average
3 How to obtain per-node guarantee:

I Solve with increased precision
I Inspect gradient to identify close-to-optimal nodes
I Repeat transshipment for “bad” nodes only
I Analysis: Total “mass” reduced by constant fraction in each run

Theorem
We can compute a (1 + ε)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ‖w ‖∞) calls to our gradient descent algorithm
with precision ε ′ = Ω(ε3/(α2 log n)).

20 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning

oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding

Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??

⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Comparison to [Sherman SODA’17]

Both papers solve (1 + ε)-approximate shortest transshipment

Our approach Sherman ’17
specialized to shortest
transshipment

general norm-minimization
framework

oracle calls generalized preconditioning
oracle of stretch O(log n) based on
spanner

preconditioner of stretch no(1)

based on metric embedding
Sequential RAM model: time
O(n2ε−3polylog(n)) time

Sequential RAM model: time
m1+o(1)ε−2

(deterministic) extension to
approximate SSSP

??

randomized tree solution ??
⇒ nearly tight approximate SSSP
in distributed and streaming
models

21 / 22



Conclusion
Contributions

1 New approach tailored to e�icient implementation in distributed models
2 Gradient descent for shortest transshipment based on oracle calls
3 Additional refinement gives per-node guarantee for approximate SSSP

Open Problems
1 Distributed Model: Faster exact SSSP?
2 Parallel Model: Approximate SSSP with m · poly(log n, ε) work and

poly(log n, ε) depth?
3 RAMModel: Approximate shortest transshipment in time

m · poly(log n, ε)?

Thank you!

22 / 22



Conclusion
Contributions

1 New approach tailored to e�icient implementation in distributed models
2 Gradient descent for shortest transshipment based on oracle calls
3 Additional refinement gives per-node guarantee for approximate SSSP

Open Problems
1 Distributed Model: Faster exact SSSP?
2 Parallel Model: Approximate SSSP with m · poly(log n, ε) work and

poly(log n, ε) depth?
3 RAM Model: Approximate shortest transshipment in time

m · poly(log n, ε)?

Thank you!

22 / 22



Conclusion
Contributions

1 New approach tailored to e�icient implementation in distributed models
2 Gradient descent for shortest transshipment based on oracle calls
3 Additional refinement gives per-node guarantee for approximate SSSP

Open Problems
1 Distributed Model: Faster exact SSSP?
2 Parallel Model: Approximate SSSP with m · poly(log n, ε) work and

poly(log n, ε) depth?
3 RAM Model: Approximate shortest transshipment in time

m · poly(log n, ε)?

Thank you!
22 / 22


