Near-Optimal Approximate Shortest Paths and
Transshipment in Distributed and Streaming Models

Sebastian Krinninger

University of Vienna
— University of Salzburg

joint work with

=S

Ruben Becker Andreas Karrenbauer Christoph Lenzen
MPI Saarbriicken MPI Saarbriicken MPI Saarbriicken

22

Approximate Single-Source Shortest Paths

Our (1 + ¢£)-approx

CONGEST (Vn+ D) - poly(log n, ¢)
rounds

22

Approximate Single-Source Shortest Paths

Our (1 + ¢£)-approx Previous best
CONGEST (¥n+ D) - poly(log n,e) (vn+ D) - 20(Vlognlog(e™ log)
rounds rounds’

Comments:
e Undirected graphs with weights € {1, 2, ..., poly(n)}
@ D = Diameter, n = #nodes
o CONGEST lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]

'[Henzinger/K/Nanongkai ’16]
2
3

22

Approximate Single-Source Shortest Paths

Our (1 + ¢£)-approx Previous best
CONGEST (¥n+ D) - poly(log n,e) (vn+ D) - 20(Vlognlog(e™ log)
rounds rounds’
Cong. Clique poly(log n, ¢) 20(Vlognlog (e~ log n))
rounds rounds?

Comments:
e Undirected graphs with weights € {1, 2, ..., poly(n)}
@ D = Diameter, n = #nodes
o CONGEST lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]

'[Henzinger/K/Nanongkai ’16]
2[Henzinger/K/Nanongkai 16]
3

22

Approximate Single-Source Shortest Paths

Our (1 + ¢£)-approx Previous best
CONGEST (¥n+ D) - poly(log n,e) (vn+ D) - 20(Vlognlog(e™ log)
rounds rounds’
Cong. Clique poly(log n, ¢) 20(Vlognlog (e~ log n))
rounds rounds?
Streaming poly(log n, €) passes (2 + 1/¢)0(Vlognloglogn) ha5geg
O(nlog n) space O(nlog? n) space®

Comments:
e Undirected graphs with weights € {1,2, ..., poly(n)}
@ D = Diameter, n = #nodes
o CONGEST lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]

'[Henzinger/K/Nanongkai *16]
2[Henzinger/K/Nanongkai 16]
3[Elkin/Neiman *16]

22

Approximate Single-Source Shortest Paths

Our (1 + ¢)-approx Exact computation
CONGEST (¥n+ D) - poly(log n,¢) n°'® + D'3(nlog n)*>
rounds rounds’
Cong. Clique poly(log n, €) o(n°-1%%)
rounds rounds?
Streaming poly(log n, €) passes O(3) passes
O(nlog n) space O(nk) space®

Comments:
e Undirected graphs with weights € {1,2, ..., poly(n)}
@ D = Diameter, n = #nodes
o CONGEST lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]

"[Elkin *17]
2[Censor-Hillel et al. *15]
3[Elkin *17]

Broadcast Congested Clique

Model:
e Network topology: clique on n nodes
@ Synchronous rounds (global clock)
@ In each round, every node sends one message to all other nodes
@ Message size O(log n)
@ Local computation is free

Problem Statement

e Initially: Every node knows weight of its incident edges and whether it
is the source or not

e Finally: Every node knows its approximate distance to the source

Problem Statement

e Initially: Every node knows weight of its incident edges and whether it
is the source or not

e Finally: Every node knows its approximate distance to the source

@ Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Problem Statement

e Initially: Every node knows weight of its incident edges and whether it
is the source or not

e Finally: Every node knows its approximate distance to the source

@ Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai *16]

t rounds in Broadcast Congested Clique model — O(t - (W/n + Diam)) rounds
in CONGEST model

Combinatorial Approach

Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

6/22

Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

1+1/k

Fact: Every graph has a (2k — 1)-spanner of size n

Application: Running time T(m, n) = T(n"™*"* n)

Sparsification II: Hop Sets

Definition
An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

7/22

Sparsification II: Hop Sets
Definition

An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes
uand v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Sparsification II: Hop Sets

Definition

An (h, €)-hop set is a set of weighted edges F such that, for all pairs of nodes
uand v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

7/22

Sparsification II: Hop Sets

Definition

An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes
uand v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Fact: Every graph has a (n°", £)-hop set of size n'**" [Cohen '94] (for
€ > 1/polylogn)

Sparsification II: Hop Sets

Definition

An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

e Parallel: m"**" work with n°" depth [Cohen ’94]
Congested Clique: n°Y rounds [Henzinger/K/Nanongkai *16]

Streaming: n®" passes with n'*" space [HKN 16, Elkin/Neiman '16]

Incremental/Decremental m'*" total time [Henzinger/K/Nanongkai *14]

Sparsification II: Hop Sets

Definition

An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

e Parallel: m"**" work with n°" depth [Cohen ’94]
Congested Clique: n°Y rounds [Henzinger/K/Nanongkai *16]

Streaming: n®" passes with n'*" space [HKN 16, Elkin/Neiman '16]

Incremental/Decremental m'*" total time [Henzinger/K/Nanongkai *14]

Challenge: Compute/maintain hop set

Sparsification II: Hop Sets

Definition

An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:

e Parallel: m"**" work with n°" depth [Cohen ’94]
Congested Clique: n°Y rounds [Henzinger/K/Nanongkai *16]

Streaming: n®" passes with n'*" space [HKN 16, Elkin/Neiman '16]

Incremental/Decremental m'*" total time [Henzinger/K/Nanongkai *14]

Challenge: Compute/maintain hop set

7/22

Hop Sets: Approaching Optimality
Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)

22

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h
[Baseline] 1 1
[Klein/Subramanian *97] 1 O(thn)

[Shi/Spencer "99] 1 o(%)

Size

o(n?)
o(t%)
O(nt)

22

Hop Sets: Approaching Optimality

Authors
Baseline]

Klein/Subramanian ’97]

[
[
[Shi/Spencer "99]
[Cohen’94]
[Bernstein’09]
[Elkin/Neiman’16]
[Elkin/Neiman’17]
[

Huang/Pettie’17]

Stretch « Hopbound h

1

1
1

T+e¢
T+e¢
T+e¢
T+e¢

T+e¢

1
|
o(2e8)
o(})
(@)O(bg k)
&
O(%)k log n
(M)O(log k)
£
O(%)k+1

O(k)k

Size

o(n?)
o(t%)
O(nt)

O(nH% log n)
Okn™ %)

O(nH% log nlog k)
O(n" 7 7)

1
O(n'*271-1)

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian ’97] 1 O(&tgn) o(t?)
[Shi/Spencer *99] 1 o(%) O(nt)
[Cohen’94] 1+e¢ (loem)Ollog k) O(nH% log n)

1
[Elkin/Neiman’16] 1+¢ (Ioik)o('(’g b O(n"" % log nlog k)

Hopset analysis of spanner/emulator in [Thorup/Zwick ’06]

8/22

Hop Sets: Approaching Optimality
Authors

[
[
[
[
[
[
[
[
[

Baseline]

Klein/Subramanian ’97]
Shi/Spencer ’99]

Cohen’94]
Bernstein’09]
Elkin/Neiman’16]
Elkin/Neiman’17]
Huang/Pettie’17]

Abboud/Bodwin/Pettie’ 16]

Stretch « Hopbound h

1

1
1

T+e¢
T+e¢
T+e¢
T+e¢
T+e¢

T+e¢

1

O(n Iotg n)

o(%)

(@)O(bg k)
B

O(%)k log n
(M)O(logk)
&
k1 k+1
O(*F)™
Kk
o(3)
k
Qu()

Size
o(n?)
o(t?)
O(nt)
O(nH% log n)
Okn™ %)
O(nH% log nlog k)
O(n" 7 7)
O(n”ﬁ)

1

n1+ﬁ—5

Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(thn) o(t?)
[Shi/Spencer "99] 1 o(%) O(nt)
1
[Cohen’94] T+e (l8my0logb) o0 % log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
[Elkin/Neiman’16] 1+¢ (g)o(bg k) o(n'*% |10g nlog k)
[Elkin/Neiman’17] 1+¢ O(%)k+1 O(n1+2"+‘—1)
1
[Huang/Pettie’17] 1+¢ O(/;()k O(nHZk“—T)
1 _
[Abboud/Bodwin/Pettie’16] 1+ ¢ Qk(%)k n'tEo 0
= Cannot have a = 1+ ¢, h = poly(1/¢) and size n - polylog(n).]

No further (significant) algorithmic improvements by better hop sets :(

It was too good to be true...

/22

Beyond Hop Sets

Our Approach

Our Approach

Gradient Descent

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

12/22

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

12/22

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand b(v) for each node v, find a flow x(e) that:
@ meets the demands: Z x(e) = b(v) + Z x(e) for every node v

e=(u,v)eE e=(v,u)eE

@ and minimizes Z w(e) - x(e).
ecE
Undirected graphs: arbitrary orientation of edges.

12/22

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

@ meets the demands: Z x(e) = b(v) + Z x(e) for every node v

e=(u,v)eE e=(v,u)eE

@ and minimizes Z w(e) - x(e).
ecE
Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize || Wx||; s.t. Ax = b

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

@ meets the demands: Z x(e) = b(v) + Z x(e) for every node v

e=(u,v)eE e=(v,u)eE

@ and minimizes Z w(e) - x(e).
ecE
Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize || Wx||; s.t. Ax = b

SSSP: source has demand —(n — 1), other nodes have demand 1

Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||oo <1

13/22

Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||oo <1

Maximize node potentials restricting stretch:
ly(u) — y(v)]/w(e) < 1 for every edge e = (u, v)
SSSP: potentials = distances to source

13/22

Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||oo <1

Maximize node potentials restricting stretch:
ly(u) — y(v)]/w(e) < 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize ||W_1AT7r||OO st.blmr=1

13/22

Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||m <1

Maximize node potentials restricting stretch:
ly(u) — y(v)]/w(e) < 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize ||W_1AT7r||OO st.blmr=1

We approximate || - || by soft-max:

Ises(x) := % In (Z (eﬁx,- + e‘ﬁxi))

1<i<n

13/22

Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||m <1

Maximize node potentials restricting stretch:
ly(u) — y(v)]/w(e) < 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize ||W_1AT7r||OO st.hlm=1
We approximate || - || by soft-max:
1
Iseg(x) := = In (eﬁ"’ + e_ﬁxi)
’ ﬁ (1;n

Goal: minimize ®g(7) := |S€ﬁ(W_1ATﬂ) st.h'mr=1 J

13/22

Soft-max approximation

Ix|lcc (Where v eR")

14/22

Soft-max approximation

Ix|lcc (Where v eR")

Additive approximation:

Inn
x|l < lsep(x) < lIxlleo + —-

B

14/22

Soft-max approximation

Ix|lcc (Where v eR")

Additive approximation:

Inn
x|l < lsep(x) < lIxlleo + —-

B

Lipschitz smoothness:

IV 1se(x) - Viseg(y)ll, < Bllx - ylls

14/22

Soft-max approximation

Ix||les (where v € R")

Additive approximation:

Inn
x|l < lsep(x) < lIxlleo + —-

B

Lipschitz smoothness:

IV 1se(x) - Viseg(y)ll, < Bllx - ylls

Intuition: Trade off quality of approximation and smoothness

14/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:

16/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:
Qp(m) — Pp(r — h)

2 V(Dﬁ(ﬂ' _ h)Th ConveXity: f(y) > f(X) + Vf(X)T(y - X)

16/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h
= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

16/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:

Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

Chain rule: V®g(7) = AW 'Vises(W A 1)

;
= Vu(r) h- (v lses (WA) = Vlses(W' AT (x — h))) wATh

16/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:

Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

. o T 1,1
Holder: x"y < ||x|l, [lyllgfor 5 + 5 =1

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,

16/22

Generic Update Step

Bounding improvement in objective for generic update 7’ = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

Lipschitz: “V Isep(x) -V Iseﬁ(y)”] <Blx -yl

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,
> Vo) h— || W AT H

16/22

Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh

> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,
> Vog(r) h- W ATH|Z

@ Suggests to compute h by solving
max{V@g(r) h: ||WATH||_ < 1}

16/22

Generic Update Step

Bounding improvement in objective for generic update 7’ = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,
> Vog(r) h- W ATH|Z
@ Suggests to compute h by solving
max{V®os() h: ||[WATH|_ < 1}

e Another transshipment problem with demand vector V®4().

Generic Update Step

Bounding improvement in objective for generic update 7’ = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,
> Vog(r) h- W ATH|Z
@ Suggests to compute h by solving
max{V®os() h: ||[WATH|_ < 1}

e Another transshipment problem with demand vector V®4().
e Key insight: a-approximation with « = O(log n) is good enough

Generic Update Step

Bounding improvement in objective for generic update 7’ = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h
= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

= V() h- (V lses (WA) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT) = Viseg(W AT (x = h))||, [W'ATH|,
> Vo) h— || W AT H

@ Suggests to compute h by solving
max{V@g(r) h: ||WATH||_ < 1}

e Another transshipment problem with demand vector V®4().
e Key insight: a-approximation with « = O(log n) is good enough
= Solve on spanner with stretch a = log n of size O(nlog n) (“oracle”)

16/22

Gradient Descent Algorithm

repeat

while 2201 > @4(7) do f — 3p.

b PTVdD/;(n) where P — [— b

h « a-approximation of max{h"h : ||W 1ATh” <1}

bTh
O = Twrarr.
if(5>£thenﬂ<—7r— g

A h
until § < SL

Gradient Descent Algorithm

repeat

while 2201 > @4(7) do f — 3p.

b PTVdD/;(n) where P — [— b

h « a-approximation of max{h"h : ||W 1ATh” <1}

bTh
O Twmare
; £ ____ 8 _ pF
if 6 > = then 7 7 2ﬁ||W"ATP71||mPh
until § < &
Details:

e 1 must stay feasible (projection onto h' 7z = 1)
@ f needs to be in the right range

Gradient Descent Algorithm

repeat

while 2201 > @4(7) do f — 3p.

b PTV(D/;(JT) where P — [— b

h « a-approximation of max{h"h : ||W]ATh” <1}

bTh
O Twmare
; £ ____ 8 _ pF
if 6 > = then 7 7 2ﬁ||W4ATPi1||DOPh
until § < &
Details:

e 1 must stay feasible (projection onto h' 7z = 1)
@ f needs to be in the right range

Theorem

Given an a-approximate shortest transshipment oracle, one can compute primal
solution x and dual solution y such that || Wx||, < (1+ €)b"y with
(¢3a? log nlog a) oracle calls.

Implementation in Brodcast Congested Clique

@ Evaluate Gradient:
> Evaluate (V®4()), locally at each node v
> (V®4(m)), is a function of 7 and weight of edges incident to v
(“edge stretches under current node potentials”™)
> Constant #rounds: Make 7 and (V®4(r)) global knowledge

18/22

Implementation in Brodcast Congested Clique

@ Evaluate Gradient:
> Evaluate (V®4()), locally at each node v
> (V®4(m)), is a function of 7 and weight of edges incident to v
(“edge stretches under current node potentials”™)
> Constant #rounds: Make 7 and (V®4(r)) global knowledge

@ Oracle call:
> Initially compute spanner in O(log n) rounds [Baswana/Sen *03]
> Spanner then is global knowledge (size O(nlog n))
> At oracle call, make gradient global knowledge (size O(n))
> Each node can internally compute solution on spanner

18/22

Are we done?

Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

20/22

Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average

20/22

Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average

© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify close-to-optimal nodes

» Repeat transshipment for “bad” nodes only

> Analysis: Total “mass” reduced by constant fraction in each run

20/22

Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average
© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify close-to-optimal nodes

» Repeat transshipment for “bad” nodes only

> Analysis: Total “mass” reduced by constant fraction in each run

Theorem

We can compute a (1 + ¢)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ||w||,) calls to our gradient descent algorithm
with precision ¢’ = Q(e*/(a* log n)).

20/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach Sherman ’17
o specialized to shortest @ general norm-minimization
transshipment framework

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach Sherman ’17
o specialized to shortest @ general norm-minimization
transshipment framework

e oracle calls o generalized preconditioning

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach

o specialized to shortest
transshipment
oracle calls
oracle of stretch O(log n) based on
spanner

Sherman 17

general norm-minimization
framework

generalized preconditioning
preconditioner of stretch n"
based on metric embedding

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach

o specialized to shortest
transshipment
oracle calls
oracle of stretch O(log n) based on
spanner

@ Sequential RAM model: time
O(n*e3polylog(n)) time

Sherman 17

general norm-minimization
framework

generalized preconditioning
preconditioner of stretch n"
based on metric embedding

Sequential RAM model: time
mito(D) =2

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach

o specialized to shortest
transshipment
oracle calls
oracle of stretch O(log n) based on
spanner

@ Sequential RAM model: time
O(n*e3polylog(n)) time

@ (deterministic) extension to
approximate SSSP

Sherman 17

general norm-minimization
framework

generalized preconditioning
preconditioner of stretch n"
based on metric embedding

Sequential RAM model: time
mito(D) =2

??

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach Sherman ’17

o specialized to shortest @ general norm-minimization
transshipment framework
oracle calls o generalized preconditioning
oracle of stretch O(log n) based on e preconditioner of stretch n°M
spanner based on metric embedding

@ Sequential RAM model: time @ Sequential RAM model: time
O(n*e3polylog(n)) time m'o()g2

@ (deterministic) extension to o 7

approximate SSSP
@ randomized tree solution e ?

21/22

Comparison to [Sherman SODA'17]

Both papers solve (1 + ¢)-approximate shortest transshipment

Our approach Sherman ’17

o specialized to shortest @ general norm-minimization
transshipment framework
oracle calls o generalized preconditioning
oracle of stretch O(log n) based on e preconditioner of stretch n°M
spanner based on metric embedding

@ Sequential RAM model: time @ Sequential RAM model: time
O(n*e3polylog(n)) time m'o()g2

@ (deterministic) extension to o 7
approximate SSSP

@ randomized tree solution o

= nearly tight approximate SSSP
in distributed and streaming
models

)

Conclusion

Contributions
© New approach tailored to efficient implementation in distributed models
@ Gradient descent for shortest transshipment based on oracle calls

@ Additional refinement gives per-node guarantee for approximate SSSP

22/22

Conclusion

Contributions
© New approach tailored to efficient implementation in distributed models
@ Gradient descent for shortest transshipment based on oracle calls

@ Additional refinement gives per-node guarantee for approximate SSSP

Open Problems
© Distributed Model: Faster exact SSSP?
@ Parallel Model: Approximate SSSP with m - poly(log n, ¢) work and
poly(log n, €) depth?
©@ RAM Model: Approximate shortest transshipment in time
m - poly(log n, €)?

Conclusion

Contributions
© New approach tailored to efficient implementation in distributed models
@ Gradient descent for shortest transshipment based on oracle calls

@ Additional refinement gives per-node guarantee for approximate SSSP

Open Problems
© Distributed Model: Faster exact SSSP?
@ Parallel Model: Approximate SSSP with m - poly(log n, ¢) work and
poly(log n, €) depth?
©@ RAM Model: Approximate shortest transshipment in time
m - poly(log n, €)?

Thank you!

