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Approximate Single-Source Shortest Paths

Our (1 + ¢)-approx Exact computation
CONGEST (¥n+ D) - poly(log n,¢)  n°'® + D'3(nlog n)*>
rounds rounds’
Cong. Clique poly(log n, €) o(n°-1%%)
rounds rounds?
Streaming poly(log n, €) passes O(3) passes
O(nlog n) space O(nk) space®

Comments:
e Undirected graphs with weights € {1,2, ..., poly(n)}
@ D = Diameter, n = #nodes
o CONGEST lower bound: Q(v/n + Diam) rounds [Das Sarma et al *11]

"[Elkin *17]
2[Censor-Hillel et al. *15]
3[Elkin *17]



Broadcast Congested Clique

Model:
e Network topology: clique on n nodes
@ Synchronous rounds (global clock)
@ In each round, every node sends one message to all other nodes
@ Message size O(log n)
@ Local computation is free



Problem Statement

e Initially: Every node knows weight of its incident edges and whether it
is the source or not

e Finally: Every node knows its approximate distance to the source
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Problem Statement

e Initially: Every node knows weight of its incident edges and whether it
is the source or not

e Finally: Every node knows its approximate distance to the source

@ Desirable addon: Implicit tree; every node knows next edge on
approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai *16]

t rounds in Broadcast Congested Clique model — O(t - (W/n + Diam)) rounds
in CONGEST model




Combinatorial Approach



Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).
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Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes v and v,
disty(u, v) < k - distg(u, v).

1+1/k

Fact: Every graph has a (2k — 1)-spanner of size n

Application: Running time T(m, n) = T(n"™*"* n)



Sparsification II: Hop Sets

Definition
An (h, £)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + ¢)dist(u, v).
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Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h  Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian ’97] 1 O(&tgn) o(t?)
[Shi/Spencer *99] 1 o(%) O(nt)
[Cohen’94] 1+e¢ (loem)Ollog k) O(nH% log n)

1
[Elkin/Neiman’16] 1+¢ (Ioik)o('(’g b O(n"" % log nlog k)

Hopset analysis of spanner/emulator in [Thorup/Zwick ’06]
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Hop Sets: Approaching Optimality

Authors Stretch « Hopbound h Size
[Baseline] 1 1 o(n?)
[Klein/Subramanian *97] 1 O(thn) o(t?)
[Shi/Spencer "99] 1 o(%) O(nt)
1
[Cohen’94] T+e (l8my0logb) o0 % log n)
1
[Bernstein’09] 1+¢ O(%)k log n O(kn'"%)
1
[Elkin/Neiman’16] 1+¢ (g)o(bg k) o(n'*% |10g nlog k)
[Elkin/Neiman’17] 1+¢ O(%)k+1 O(n1+2"+‘—1)
1
[Huang/Pettie’17] 1+¢ O(/;()k O(nHZk“—T)
1 _
[Abboud/Bodwin/Pettie’16] 1+ ¢ Qk(%)k n'tEo 0
= Cannot have a = 1+ ¢, h = poly(1/¢) and size n - polylog(n). ]

No further (significant) algorithmic improvements by better hop sets :(



It was too good to be true...
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Beyond Hop Sets



Our Approach




Our Approach

Gradient Descent



Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.
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Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

@ meets the demands: Z x(e) = b(v) + Z x(e) for every node v

e=(u,v)eE e=(v,u)eE

@ and minimizes Z w(e) - x(e).
ecE
Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize || Wx||; s.t. Ax = b

SSSP: source has demand —(n — 1), other nodes have demand 1




Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||oo <1
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We approximate || - || by soft-max:
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Reformulation

LP Formulation

Primal: minimize ||Wx||; st. Ax=0
Dual: maximize b’y s.t. ||W_1ATy||m <1

Maximize node potentials restricting stretch:
ly(u) — y(v)]/w(e) < 1 for every edge e = (u, v)
SSSP: potentials = distances to source

Equivalent:
minimize ||W_1AT7r||OO st.hlm=1
We approximate || - || by soft-max:
1
Iseg(x) := = In (eﬁ"’ + e_ﬁxi)
’ ﬁ (1;n

Goal: minimize ®g(7) := |S€ﬁ(W_1ATﬂ) st.h'mr=1 J
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Soft-max approximation

Ix|lcc (Where v eR")
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Soft-max approximation

Ix||les (where v € R")

Additive approximation:

Inn
x|l < lsep(x) < lIxlleo + —-

B

Lipschitz smoothness:

IV 1se(x) - Viseg(y)ll, < Bllx - ylls

Intuition: Trade off quality of approximation and smoothness

14/22
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Generic Update Step

Bounding improvement in objective for generic update 7" = 7 — h:
Qp(m) — Pp(r — h)

2 V(Dﬁ(ﬂ' _ h)Th ConveXity: f(y) > f(X) + Vf(X)T(y - X)
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Bounding improvement in objective for generic update 7" = 7 — h:

Qp(m) — Pp(r — h)
> Vos(r—h)h

= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

Chain rule: V®g(7) = AW 'Vises(W A 1)

;
= Vu(r) h- (v lses (WA ) = Vlses(W' AT (x — h))) wATh
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Generic Update Step

Bounding improvement in objective for generic update 7’ = 7 — h:
Qp(m) — Pp(r — h)
> Vos(r—h)h
= Vu(r) h- (chﬁ(n)Th — Va(r - h)Th)

= V() h- (V lses (WA ) = Vlses(W' AT (x — h)))T wATh
> Vdp(r) h—||Viseg(W AT ) = Viseg(W AT (x = h))||, [W'ATH|,
> Vo) h— || W AT H

@ Suggests to compute h by solving
max{V@g(r) h: ||WATH||_ < 1}

e Another transshipment problem with demand vector V®4().
e Key insight: a-approximation with « = O(log n) is good enough
= Solve on spanner with stretch a = log n of size O(nlog n) (“oracle”)
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Gradient Descent Algorithm

repeat

while 2201 > @4(7) do f — 3p.

b PTVdD/;(n) where P — [ — b

h « a-approximation of max{h"h : ||W 1ATh” <1}

bTh
O = Twrarr.
if(5>£thenﬂ<—7r— g

A h
until § < SL
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Gradient Descent Algorithm

repeat

while 2201 > @4(7) do f — 3p.

b PTV(D/;(JT) where P — [ — b

h « a-approximation of max{h"h : ||W ]ATh” <1}

bTh
O Twmare
; £ ____ 8 _ pF
if 6 > = then 7 7 2ﬁ||W4ATPi1||DOPh
until § < &
Details:

e 1 must stay feasible (projection onto h' 7z = 1)
@ f needs to be in the right range

Theorem

Given an a-approximate shortest transshipment oracle, one can compute primal
solution x and dual solution y such that || Wx||, < (1+ €)b"y with
(¢3a? log nlog a) oracle calls.




Implementation in Brodcast Congested Clique

@ Evaluate Gradient:
> Evaluate (V®4()), locally at each node v
> (V®4(m)), is a function of 7 and weight of edges incident to v
(“edge stretches under current node potentials”™)
> Constant #rounds: Make 7 and (V®4(r)) global knowledge
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Implementation in Brodcast Congested Clique

@ Evaluate Gradient:
> Evaluate (V®4()), locally at each node v
> (V®4(m)), is a function of 7 and weight of edges incident to v
(“edge stretches under current node potentials”™)
> Constant #rounds: Make 7 and (V®4(r)) global knowledge

@ Oracle call:
> Initially compute spanner in O(log n) rounds [Baswana/Sen *03]
> Spanner then is global knowledge (size O(nlog n))
> At oracle call, make gradient global knowledge (size O(n))
> Each node can internally compute solution on spanner
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Are we done?



Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions
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Approximate SSSP

@ Black-box reduction from SSSP to shortest transshipment only for exact
solutions

@ Transshipment will only guarantee (1 + ¢)-approximation on average
© How to obtain per-node guarantee:

> Solve with increased precision

> Inspect gradient to identify close-to-optimal nodes

» Repeat transshipment for “bad” nodes only

> Analysis: Total “mass” reduced by constant fraction in each run

Theorem

We can compute a (1 + ¢)-approximate distance estimate for each node in the
SSSP problem with polylog(n, ||w||,) calls to our gradient descent algorithm
with precision ¢’ = Q(e*/(a* log n)).
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