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Our Result

Theorem
There is a deterministic algorithm that, given an undirected graph
with real edge weights in [1,𝑊 ] undergoing edge insertions,
maintains in total time 𝑂(𝑚 log 𝑛 log log 𝑛 + 𝑛 log6(𝑛𝑊 ) log log 𝑛)
over all updates a distance oracle with polylogarithmic stretch and
query time 𝑂(log log 𝑛), where 𝑛 denotes the number of vertices and
𝑚 denotes the final number of edges of the graph.

Conditional lower bound
Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir ’22, Abboud, Bringmann, Fischer ’22]

Notable:
• No Even-Shiloach tree
• No expander decomposition
• No Thorup-Zwick based construction
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𝑛𝑜(1) Barrier

Decremental:

• [Chechik ’18] (rand.) stretch 𝑂(log 𝑛), total time 𝑚𝑛𝑜(1)

• [Łącki, Nazari ’22] (rand.) stretch 𝑂(log 𝑛), total time �̃�(𝑚 + 𝑛1+𝑜(1))

• [Chuzhoy ’21] (det.) polylog. stretch, total time 𝑂(𝑚1+𝛿)

• [Bernstein, Chechik] (det.) (1 + 𝜖)-approx. SSSP, total time �̃�(𝑛2).

Incremental:

• [Chen, Goranci, Henzinger, Peng, Saranurak ’20] (det.) stretch 𝑂(1), total
time 𝑂(𝑚1+𝑜(1))
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A Case for Partially Dynamic Algorithms

Decremental:

• Hope: extend to fully dynamic by reductions

• Useful for static algorithms
• multicommodity flow [Mądry ’10,Chuzhoy ’21]

• (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak

’21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva ’22]

• expander routing

Incremental:

• Natural growth processes (co-authors, Wikipedia links, …)

• Search for implementable algorithms
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Static Construction: Hierarchy

[Andoni, Stein, Zhong ’20]

Overall setup:

• Hierarchy of 𝑘 = Θ(log log 𝑛) sparsifiers: 𝐺 = 𝐻1, 𝐻2, … , 𝐻𝑘

• |𝑉 (𝐻𝑖+1)| = |𝑉 (𝐻𝑖)|/𝑏𝑖 for double exponentially increasing 𝑏𝑖’s

|𝑉 (𝐻𝑖)| = 𝑂 ( 𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

)

|𝐸(𝐻𝑖)| ≤ 𝑚 + 𝑂 ( 𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

⋅ 𝑏𝑖)

• 𝐻𝑖 is an 𝛼-approximation of 𝐻𝑖−1 for some constant 𝛼
𝛼𝑘 = polylog 𝑛
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Static Construction: One Level

• Nodes of 𝐻𝑖+1: Randomized hitting set of size �̃�(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠))
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Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖 )
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖 ) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)
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Dynamic Algorithm: Hierarchy

The problem:

• Incremental algorithm 𝒜𝑖 maintaining 𝐻𝑖+1 based on 𝐻𝑖

• Edges added to 𝐻𝑖+1 appear as insertions to 𝒜𝑖+1

• Number of edges added to 𝐻𝑖+1: 𝑂(|𝑉 (𝐻𝑖)|𝑏2𝑖 log 𝑛 + |𝐸(𝐻𝑖)| log 𝑛)

• For 𝑘 = Θ(log log 𝑛) levels: 𝑚 ⋅𝑂(log 𝑛)log log 𝑛 insertions (at best)

• Will not give 𝑂(𝑚 polylog 𝑛) total update time
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Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections
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The Full Picture

Can make it work by maintaining additional types of edges
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Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node’s pivot?

Non-working approach:

• Keep track of pivots at distance [𝑅, 2𝑅]

• Connect to one of them uniformly at random

• Would expect 𝑂(log 𝑛) changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)
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Questions

Decremental?

Worst-case update time?
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