Deterministic Incremental APSP with Polylogarithmic Update Time and Stretch

Sebastian Forster, né Krinninger

University of Salzburg

Dagstuhl Seminar 22461 "Dynamic Graph Algorithms" (Nov. 2022) Joint work with Yasamin Nazari and Maximilian Probst Gutenberg

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 947702). Supported by the Austrian Science Fund (FWF): P 32863-N. The research leading to these results has received funding from the grant "Algorithms and complexity for high-accuracy flows and convex optimization" (no. 200021 204787) of the Swiss National Science Foundation.

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in [1, W] undergoing edge insertions, maintains in total time $O(m \log n \log \log n + n \log^6(nW) \log \log n)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in [1, W] undergoing edge insertions, maintains in total time $O(m \log n \log \log n + n \log^6(nW) \log \log n)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Conditional lower bound

Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir '22, Abboud, Bringmann, Fischer '22]

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in [1, W] undergoing edge insertions, maintains in total time $O(m \log n \log \log n + n \log^6(nW) \log \log n)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Conditional lower bound

Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir '22, Abboud, Bringmann, Fischer '22]

Notable:

- No Even-Shiloach tree
- No expander decomposition
- No Thorup-Zwick based construction

n^{o(1)} Barrier

Decremental:

- [Chechik '18] (rand.) stretch $O(\log n)$, total time $mn^{o(1)}$
- [Łącki, Nazari '22] (rand.) stretch $O(\log n)$, total time $\tilde{O}(m + n^{1+o(1)})$
- [Chuzhoy '21] (det.) polylog. stretch, total time $O(m^{1+\delta})$
- [Bernstein, Chechik] (det.) $(1 + \epsilon)$ -approx. SSSP, total time $\tilde{O}(n^2)$.

Incremental:

• [Chen, Goranci, Henzinger, Peng, Saranurak '20] (det.) stretch O(1), total time $O(m^{1+o(1)})$

A Case for Partially Dynamic Algorithms

Decremental:

- · Hope: extend to fully dynamic by reductions
- · Useful for static algorithms
 - multicommodity flow [Mądry '10,Chuzhoy '21]
 - (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak '21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva '22]
 - expander routing

A Case for Partially Dynamic Algorithms

Decremental:

- · Hope: extend to fully dynamic by reductions
- · Useful for static algorithms
 - multicommodity flow [Mądry '10,Chuzhoy '21]
 - (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak '21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva '22]
 - expander routing

Incremental:

- Natural growth processes (co-authors, Wikipedia links, ...)
- Search for implementable algorithms

[Andoni, Stein, Zhong '20]

Overall setup:

- Hierarchy of $k = \Theta(\log \log n)$ sparsifiers: $G = H_1, H_2, \dots, H_k$
- $|V(H_{i+1})| = |V(H_i)|/b_i$ for double exponentially increasing b_i 's

$$|V(H_i)| = O\left(\frac{n}{b_1 \cdot b_2 \cdot \dots \cdot b_{i-1}}\right)$$
$$|E(H_i)| \le m + O\left(\frac{n}{b_1 \cdot b_2 \cdot \dots \cdot b_{i-1}} \cdot b_i\right)$$

• H_i is an α -approximation of H_{i-1} for some constant α $\alpha^k = \text{polylog } n$

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i

- Nodes of H_{i+1} : Randomized hitting set of size $O(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i
- $|E(H_{i+1})| \le |E(H_i)| + |V(H_i)| \cdot b_i$

- Nodes of H_{i+1} : Randomized hitting set of size $O(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i
- $|E(H_{i+1})| \le |E(H_i)| + |V(H_i)| \cdot b_i$

segment $y_{s-1} \rightarrow y_s$ approximated in H_{i+1} with multiplicative stretch α and additive stretch $d_{H_i}(y_s, p_i(y_s))$

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

• Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$
- Let R be distance to current pivot and reassign pivot when b_i nodes at distance R/2

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$
- Let *R* be distance to current pivot and reassign pivot when b_i nodes at distance *R*/2 Happens after at most b_i^2 edge insertions to *R*/2-ball

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$
- Let *R* be distance to current pivot and reassign pivot when b_i nodes at distance *R*/2 Happens after at most b_i^2 edge insertions to *R*/2-ball
- Total time $\tilde{O}(|V(H_i)|b_i^4)$ for maintaining shrinking b_i -balls

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$
- Let R be distance to current pivot and reassign pivot when b_i nodes at distance R/2 Happens after at most b_i^2 edge insertions to R/2-ball
- Total time $\tilde{O}(|V(H_i)|b_i^4)$ for maintaining shrinking b_i -balls

Deterministic maintenance of pivots:

• Dynamic version of Greedy

Approximate Pivots

Edge weights in H_i based on distances to pivots of endpoints Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_i -ball takes time $\tilde{O}(b_i^2)$
- Let *R* be distance to current pivot and reassign pivot when b_i nodes at distance *R*/2 Happens after at most b_i^2 edge insertions to *R*/2-ball
- Total time $\tilde{O}(|V(H_i)|b_i^4)$ for maintaining shrinking b_i -balls

Deterministic maintenance of pivots:

- Dynamic version of Greedy
- Charging scheme: each pivot reduces approximate pivot distance of b_i nodes by a constant factor
 In total: Õ(|V(H_i)|/b_i) pivots (= |V(H_{i+1})|)

The problem:

- Incremental algorithm \mathcal{A}_i maintaining H_{i+1} based on H_i
- Edges added to H_{i+1} appear as **insertions** to \mathscr{A}_{i+1}

The problem:

- Incremental algorithm \mathcal{A}_i maintaining H_{i+1} based on H_i
- Edges added to H_{i+1} appear as **insertions** to \mathscr{A}_{i+1}
- Number of edges added to H_{i+1} : $O(|V(H_i)|b_i^2 \log n + |E(H_i)| \log n)$

The problem:

- Incremental algorithm \mathcal{A}_i maintaining H_{i+1} based on H_i
- Edges added to H_{i+1} appear as **insertions** to \mathscr{A}_{i+1}
- Number of edges added to H_{i+1} : $O(|V(H_i)|b_i^2 \log n + |E(H_i)| \log n)$
- For $k = \Theta(\log \log n)$ levels: $m \cdot O(\log n)^{\log \log n}$ insertions (at best)
- Will not give $O(m \operatorname{polylog} n)$ total update time

Solutions and More Challenges

Solutions and More Challenges

Idea: Avoid "projections of projections"

• Directly project to *all* higher levels

- Directly project to *all* higher levels
- projected edge weight = ∑ (approximate) distances to pivots + original edge weight

- Directly project to *all* higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly

- Directly project to *all* higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure

- Directly project to *all* higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- · Maintain sums with dynamic tree data structure

- Directly project to *all* higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- · Maintain sums with dynamic tree data structure

Challenge:

- We've opened up the "black box"
- But: level-by-level analysis was very convenient for correctness proof

- Directly project to *all* higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- · Maintain sums with dynamic tree data structure

Challenge:

- We've opened up the "black box"
- But: level-by-level analysis was very convenient for correctness proof
- · Problem: pivots might be out of sync with actual projections

The Full Picture

Can make it work by maintaining additional types of edges

How to avoid too many changes of a node's pivot?

How to avoid too many changes of a node's pivot?

Non-working approach:

• Keep track of pivots at distance [R, 2R]

How to avoid too many changes of a node's pivot?

Non-working approach:

- Keep track of pivots at distance [*R*, 2*R*]
- · Connect to one of them uniformly at random
- Would expect $O(\log n)$ changes of pivot in that range

How to avoid too many changes of a node's pivot?

Non-working approach:

- Keep track of pivots at distance [*R*, 2*R*]
- · Connect to one of them uniformly at random
- Would expect $O(\log n)$ changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)

Decremental?

Worst-case update time?