Deterministic Incremental APSP with Polylogarithmic

Update Time and Stretch

Sebastian Forster, né Krinninger
University of Salzburg
Dagstuhl Seminar 22461 "Dynamic Graph Algorithms" (Nov. 2022)
Joint work with Yasamin Nazari and Maximilian Probst Gutenberg

Der Wissenschaftsfonds.

Swiss National Science Foundation

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 947702). Supported by the Austrian Science Fund (FWF): P 32863-N. The research leading to these results has received funding from the grant "Algorithms and complexity for high-accuracy flows and convex optimization" (no. 200021 204787) of the Swiss National Science Foundation.

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in $[1, W]$ undergoing edge insertions, maintains in total time $O\left(m \log n \log \log n+n \log ^{6}(n W) \log \log n\right)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in $[1, W]$ undergoing edge insertions, maintains in total time $O\left(m \log n \log \log n+n \log ^{6}(n W) \log \log n\right)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Conditional lower bound

Constant stretch likely needs polynomial update time [Abboud,
Bringmann, Khoury, Zamir '22, Abboud, Bringmann, Fischer '22]

Our Result

Theorem

There is a deterministic algorithm that, given an undirected graph with real edge weights in $[1, W]$ undergoing edge insertions, maintains in total time $O\left(m \log n \log \log n+n \log ^{6}(n W) \log \log n\right)$ over all updates a distance oracle with polylogarithmic stretch and query time $O(\log \log n)$, where n denotes the number of vertices and m denotes the final number of edges of the graph.

Conditional lower bound

Constant stretch likely needs polynomial update time [Abboud,
Bringmann, Khoury, Zamir '22, Abboud, Bringmann, Fischer '22]

Notable:

- No Even-Shiloach tree
- No expander decomposition
- No Thorup-Zwick based construction

Decremental:

- [Chechik '18] (rand.) stretch $O(\log n)$, total time $m n^{o(1)}$
- [tącki, Nazari ' 22$]$ (rand.) stretch $O(\log n)$, total time $\tilde{O}\left(m+n^{1+o(1)}\right)$
- [Chuzhoy '21] (det.) polylog. stretch, total time $O\left(m^{1+\delta}\right)$
- [Bernstein, Chechik] (det.) $(1+\epsilon)$-approx. SSSP, total time $\tilde{O}\left(n^{2}\right)$.

Incremental:

- [Chen, Goranci, Henzinger, Peng, Saranurak '20] (det.) stretch $O(1)$, total time $O\left(m^{1+o(1)}\right)$

A Case for Partially Dynamic Algorithms

Decremental:

- Hope: extend to fully dynamic by reductions
- Useful for static algorithms
- multicommodity flow [Mądry '10,Chuzhoy '21]
- (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak '21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva '22]
- expander routing

A Case for Partially Dynamic Algorithms

Decremental:

- Hope: extend to fully dynamic by reductions
- Useful for static algorithms
- multicommodity flow [Mądry '10,Chuzhoy '21]
- (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak '21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva '22]
- expander routing

Incremental:

- Natural growth processes (co-authors, Wikipedia links, ...)
- Search for implementable algorithms

Static Construction: Hierarchy

[Andoni, Stein, Zhong '20]

Overall setup:

- Hierarchy of $k=\Theta(\log \log n)$ sparsifiers: $G=H_{1}, H_{2}, \ldots, H_{k}$
- $\left|V\left(H_{i+1}\right)\right|=\left|V\left(H_{i}\right)\right| / b_{i}$ for double exponentially increasing b_{i} 's

$$
\begin{gathered}
\left|V\left(H_{i}\right)\right|=O\left(\frac{n}{b_{1} \cdot b_{2} \cdot \cdots \cdot b_{i-1}}\right) \\
\left|E\left(H_{i}\right)\right| \leq m+O\left(\frac{n}{b_{1} \cdot b_{2} \cdot \cdots \cdot b_{i-1}} \cdot b_{i}\right)
\end{gathered}
$$

- H_{i} is an α-approximation of H_{i-1} for some constant α $\alpha^{k}=$ polylog n

Static Construction: One Level

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}\left(n / b_{i}\right)$
- Compute b_{i}-ball around each node (b_{i} closest nodes) b_{i}-ball of u contains sampled node $p_{i}(u)$ ("pivot")

Static Construction: One Level

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}\left(n / b_{i}\right)$
- Compute b_{i}-ball around each node (b_{i} closest nodes) b_{i}-ball of u contains sampled node $p_{i}(u)$ ("pivot")
- "Ball edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every u and v in b_{i}-ball of u
- "Projected edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every edge (u, v) of H_{i}

Static Construction: One Level

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}\left(n / b_{i}\right)$
- Compute b_{i}-ball around each node (b_{i} closest nodes) b_{i}-ball of u contains sampled node $p_{i}(u)$ ("pivot")
- "Ball edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every u and v in b_{i}-ball of u
- "Projected edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every edge (u, v) of H_{i}
- $\left|E\left(H_{i+1}\right)\right| \leq\left|E\left(H_{i}\right)\right|+\left|V\left(H_{i}\right)\right| \cdot b_{i}$

Static Construction: One Level

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}\left(n / b_{i}\right)$
- Compute b_{i}-ball around each node (b_{i} closest nodes) b_{i}-ball of u contains sampled node $p_{i}(u)$ ("pivot")
- "Ball edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every u and v in b_{i}-ball of u
- "Projected edges": $\left(p_{i}(u), p_{i}(v)\right)$ for every edge (u, v) of H_{i}
- $\left|E\left(H_{i+1}\right)\right| \leq\left|E\left(H_{i}\right)\right|+\left|V\left(H_{i}\right)\right| \cdot b_{i}$

segment $y_{s-1} \rightarrow y_{s}$ approximated in H_{i+1} with multiplicative stretch α and additive stretch $d_{H_{i}}\left(y_{s}, p_{i}\left(y_{s}\right)\right)$

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$
- Let R be distance to current pivot and reassign pivot when b_{i} nodes at distance $R / 2$

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$
- Let R be distance to current pivot and reassign pivot when b_{i} nodes at distance $R / 2$ Happens after at most b_{i}^{2} edge insertions to $R / 2$-ball

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$
- Let R be distance to current pivot and reassign pivot when b_{i} nodes at distance $R / 2$ Happens after at most b_{i}^{2} edge insertions to $R / 2$-ball
- Total time $\tilde{O}\left(\left|V\left(H_{i}\right)\right| b_{i}^{4}\right)$ for maintaining shrinking b_{i}-balls

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$
- Let R be distance to current pivot and reassign pivot when b_{i} nodes at distance $R / 2$ Happens after at most b_{i}^{2} edge insertions to $R / 2$-ball
- Total time $\tilde{O}\left(\left|V\left(H_{i}\right)\right| b_{i}^{4}\right)$ for maintaining shrinking b_{i}-balls

Deterministic maintenance of pivots:

- Dynamic version of Greedy

Dynamic Algorithm: One Level

Approximate Pivots

Edge weights in H_{i} based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:

- Static computation of b_{i}-ball takes time $\tilde{O}\left(b_{i}^{2}\right)$
- Let R be distance to current pivot and reassign pivot when b_{i} nodes at distance $R / 2$ Happens after at most b_{i}^{2} edge insertions to $R / 2$-ball
- Total time $\tilde{O}\left(\left|V\left(H_{i}\right)\right| b_{i}^{4}\right)$ for maintaining shrinking b_{i}-balls

Deterministic maintenance of pivots:

- Dynamic version of Greedy
- Charging scheme: each pivot reduces approximate pivot distance of b_{i} nodes by a constant factor
In total: $\tilde{O}\left(\left|V\left(H_{i}\right)\right| / b_{i}\right)$ pivots $\left(=\left|V\left(H_{i+1}\right)\right|\right)$

Dynamic Algorithm: Hierarchy

The problem:

- Incremental algorithm \mathscr{A}_{i} maintaining H_{i+1} based on H_{i}
- Edges added to H_{i+1} appear as insertions to \mathscr{A}_{i+1}

Dynamic Algorithm: Hierarchy

The problem:

- Incremental algorithm \mathscr{A}_{i} maintaining H_{i+1} based on H_{i}
- Edges added to H_{i+1} appear as insertions to \mathscr{A}_{i+1}
- Number of edges added to $H_{i+1}: O\left(\left|V\left(H_{i}\right)\right| b_{i}^{2} \log n+\left|E\left(H_{i}\right)\right| \log n\right)$

Dynamic Algorithm: Hierarchy

The problem:

- Incremental algorithm \mathscr{A}_{i} maintaining H_{i+1} based on H_{i}
- Edges added to H_{i+1} appear as insertions to \mathscr{A}_{i+1}
- Number of edges added to $H_{i+1}: O\left(\left|V\left(H_{i}\right)\right| b_{i}^{2} \log n+\left|E\left(H_{i}\right)\right| \log n\right)$
- For $k=\Theta(\log \log n)$ levels: $m \cdot O(\log n)^{\log \log n}$ insertions (at best)
- Will not give O (m polylog n) total update time

Solutions and More Challenges

Idea: Avoid "projections of projections"

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight $=\sum$ (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- Maintain sums with dynamic tree data structure

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- Maintain sums with dynamic tree data structure

Challenge:

- We've opened up the "black box"
- But: level-by-level analysis was very convenient for correctness proof

Solutions and More Challenges

Idea: Avoid "projections of projections"

- Directly project to all higher levels
- projected edge weight = \sum (approximate) distances to pivots + original edge weight
- Project in a lazy fashion whenever this sum changes significantly
- "Pivot chains" form a tree structure
- Maintain sums with dynamic tree data structure

Challenge:

- We've opened up the "black box"
- But: level-by-level analysis was very convenient for correctness proof
- Problem: pivots might be out of sync with actual projections

The Full Picture

Can make it work by maintaining additional types of edges

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node's pivot?

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node's pivot?

Non-working approach:

- Keep track of pivots at distance $[R, 2 R]$

Challenges for Decremental Setting

Key challenge:

How to avoid too many changes of a node's pivot?

Non-working approach:

- Keep track of pivots at distance $[R, 2 R]$
- Connect to one of them uniformly at random
- Would expect $O(\log n)$ changes of pivot in that range

Challenges for Decremental Setting

Key challenge:

How to avoid too many changes of a node's pivot?

Non-working approach:

- Keep track of pivots at distance $[R, 2 R]$
- Connect to one of them uniformly at random
- Would expect $O(\log n)$ changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots
(standard approach in Thorup-Zwick based constructions)

Questions

Decremental?

Worst-case update time?

