
Deterministic Incremental APSP with Polylogarithmic

Update Time and Stretch

Sebastian Forster, né Krinninger

University of Salzburg

Dagstuhl Seminar 22461 “Dynamic Graph Algorithms” (Nov. 2022)
Joint work with Yasamin Nazari and Maximilian Probst Gutenberg

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 947702). Supported by the Austrian Science Fund (FWF): P 32863-N.
The research leading to these results has received funding from the grant “Algorithms and complexity for high-accuracy flows
and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation.

Our Result

Theorem
There is a deterministic algorithm that, given an undirected graph
with real edge weights in [1,𝑊] undergoing edge insertions,
maintains in total time 𝑂(𝑚 log 𝑛 log log 𝑛 + 𝑛 log6(𝑛𝑊) log log 𝑛)
over all updates a distance oracle with polylogarithmic stretch and
query time 𝑂(log log 𝑛), where 𝑛 denotes the number of vertices and
𝑚 denotes the final number of edges of the graph.

Conditional lower bound
Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir ’22, Abboud, Bringmann, Fischer ’22]

Notable:
• No Even-Shiloach tree
• No expander decomposition
• No Thorup-Zwick based construction

1

Our Result

Theorem
There is a deterministic algorithm that, given an undirected graph
with real edge weights in [1,𝑊] undergoing edge insertions,
maintains in total time 𝑂(𝑚 log 𝑛 log log 𝑛 + 𝑛 log6(𝑛𝑊) log log 𝑛)
over all updates a distance oracle with polylogarithmic stretch and
query time 𝑂(log log 𝑛), where 𝑛 denotes the number of vertices and
𝑚 denotes the final number of edges of the graph.

Conditional lower bound
Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir ’22, Abboud, Bringmann, Fischer ’22]

Notable:
• No Even-Shiloach tree
• No expander decomposition
• No Thorup-Zwick based construction

1

Our Result

Theorem
There is a deterministic algorithm that, given an undirected graph
with real edge weights in [1,𝑊] undergoing edge insertions,
maintains in total time 𝑂(𝑚 log 𝑛 log log 𝑛 + 𝑛 log6(𝑛𝑊) log log 𝑛)
over all updates a distance oracle with polylogarithmic stretch and
query time 𝑂(log log 𝑛), where 𝑛 denotes the number of vertices and
𝑚 denotes the final number of edges of the graph.

Conditional lower bound
Constant stretch likely needs polynomial update time [Abboud,

Bringmann, Khoury, Zamir ’22, Abboud, Bringmann, Fischer ’22]

Notable:
• No Even-Shiloach tree
• No expander decomposition
• No Thorup-Zwick based construction 1

𝑛𝑜(1) Barrier

Decremental:

• [Chechik ’18] (rand.) stretch 𝑂(log 𝑛), total time 𝑚𝑛𝑜(1)

• [Łącki, Nazari ’22] (rand.) stretch 𝑂(log 𝑛), total time �̃�(𝑚 + 𝑛1+𝑜(1))

• [Chuzhoy ’21] (det.) polylog. stretch, total time 𝑂(𝑚1+𝛿)

• [Bernstein, Chechik] (det.) (1 + 𝜖)-approx. SSSP, total time �̃�(𝑛2).

Incremental:

• [Chen, Goranci, Henzinger, Peng, Saranurak ’20] (det.) stretch 𝑂(1), total
time 𝑂(𝑚1+𝑜(1))

2

A Case for Partially Dynamic Algorithms

Decremental:

• Hope: extend to fully dynamic by reductions

• Useful for static algorithms
• multicommodity flow [Mądry ’10,Chuzhoy ’21]

• (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak

’21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva ’22]

• expander routing

Incremental:

• Natural growth processes (co-authors, Wikipedia links, …)

• Search for implementable algorithms

3

A Case for Partially Dynamic Algorithms

Decremental:

• Hope: extend to fully dynamic by reductions

• Useful for static algorithms
• multicommodity flow [Mądry ’10,Chuzhoy ’21]

• (approximate) min-cost flow [Bernstein, Probst Gutenberg, Saranurak

’21, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva ’22]

• expander routing

Incremental:

• Natural growth processes (co-authors, Wikipedia links, …)

• Search for implementable algorithms

3

Static Construction: Hierarchy

[Andoni, Stein, Zhong ’20]

Overall setup:

• Hierarchy of 𝑘 = Θ(log log 𝑛) sparsifiers: 𝐺 = 𝐻1, 𝐻2, … , 𝐻𝑘

• |𝑉 (𝐻𝑖+1)| = |𝑉 (𝐻𝑖)|/𝑏𝑖 for double exponentially increasing 𝑏𝑖’s

|𝑉 (𝐻𝑖)| = 𝑂 (𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

)

|𝐸(𝐻𝑖)| ≤ 𝑚 + 𝑂 (𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

⋅ 𝑏𝑖)

• 𝐻𝑖 is an 𝛼-approximation of 𝐻𝑖−1 for some constant 𝛼
𝛼𝑘 = polylog 𝑛

4

Static Construction: One Level

• Nodes of 𝐻𝑖+1: Randomized hitting set of size �̃�(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠))

5

Static Construction: One Level

• Nodes of 𝐻𝑖+1: Randomized hitting set of size �̃�(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖

• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠))

5

Static Construction: One Level

• Nodes of 𝐻𝑖+1: Randomized hitting set of size �̃�(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠))

5

Static Construction: One Level

• Nodes of 𝐻𝑖+1: Randomized hitting set of size �̃�(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠)) 5

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)

• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖
nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2

Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy

• Charging scheme: each pivot reduces approximate pivot
distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|)

6

Dynamic Algorithm: One Level

Approximate Pivots
Edge weights in 𝐻𝑖 based on distances to pivots of endpoints
Lazy approach: Keep pivot until significantly closer pivot exists

Truncated Dijkstra primitive:
• Static computation of 𝑏𝑖-ball takes time �̃�(𝑏2𝑖)
• Let 𝑅 be distance to current pivot and reassign pivot when 𝑏𝑖

nodes at distance 𝑅/2 Happens after at most 𝑏2𝑖 edge insertions
to 𝑅/2-ball

• Total time �̃�(|𝑉 (𝐻𝑖)|𝑏4𝑖) for maintaining shrinking 𝑏𝑖-balls

Deterministic maintenance of pivots:
• Dynamic version of Greedy
• Charging scheme: each pivot reduces approximate pivot

distance of 𝑏𝑖 nodes by a constant factor
In total: �̃�(|𝑉 (𝐻𝑖)|/𝑏𝑖) pivots (= |𝑉 (𝐻𝑖+1)|) 6

7

7

Dynamic Algorithm: Hierarchy

The problem:

• Incremental algorithm 𝒜𝑖 maintaining 𝐻𝑖+1 based on 𝐻𝑖

• Edges added to 𝐻𝑖+1 appear as insertions to 𝒜𝑖+1

• Number of edges added to 𝐻𝑖+1: 𝑂(|𝑉 (𝐻𝑖)|𝑏2𝑖 log 𝑛 + |𝐸(𝐻𝑖)| log 𝑛)

• For 𝑘 = Θ(log log 𝑛) levels: 𝑚 ⋅𝑂(log 𝑛)log log 𝑛 insertions (at best)

• Will not give 𝑂(𝑚 polylog 𝑛) total update time

8

Dynamic Algorithm: Hierarchy

The problem:

• Incremental algorithm 𝒜𝑖 maintaining 𝐻𝑖+1 based on 𝐻𝑖

• Edges added to 𝐻𝑖+1 appear as insertions to 𝒜𝑖+1

• Number of edges added to 𝐻𝑖+1: 𝑂(|𝑉 (𝐻𝑖)|𝑏2𝑖 log 𝑛 + |𝐸(𝐻𝑖)| log 𝑛)

• For 𝑘 = Θ(log log 𝑛) levels: 𝑚 ⋅𝑂(log 𝑛)log log 𝑛 insertions (at best)

• Will not give 𝑂(𝑚 polylog 𝑛) total update time

8

Dynamic Algorithm: Hierarchy

The problem:

• Incremental algorithm 𝒜𝑖 maintaining 𝐻𝑖+1 based on 𝐻𝑖

• Edges added to 𝐻𝑖+1 appear as insertions to 𝒜𝑖+1

• Number of edges added to 𝐻𝑖+1: 𝑂(|𝑉 (𝐻𝑖)|𝑏2𝑖 log 𝑛 + |𝐸(𝐻𝑖)| log 𝑛)

• For 𝑘 = Θ(log log 𝑛) levels: 𝑚 ⋅𝑂(log 𝑛)log log 𝑛 insertions (at best)

• Will not give 𝑂(𝑚 polylog 𝑛) total update time

8

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels

• projected edge weight = ∑ (approximate) distances to pivots +
original edge weight

• Project in a lazy fashion whenever this sum changes
significantly

• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight

• Project in a lazy fashion whenever this sum changes
significantly

• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly

• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure

• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof

• Problem: pivots might be out of sync with actual projections

9

Solutions and More Challenges

Idea: Avoid “projections of projections”

• Directly project to all higher levels
• projected edge weight = ∑ (approximate) distances to pivots +

original edge weight
• Project in a lazy fashion whenever this sum changes

significantly
• “Pivot chains” form a tree structure
• Maintain sums with dynamic tree data structure

Challenge:
• We’ve opened up the “black box”
• But: level-by-level analysis was very convenient for correctness

proof
• Problem: pivots might be out of sync with actual projections

9

The Full Picture

Can make it work by maintaining additional types of edges

10

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node’s pivot?

Non-working approach:

• Keep track of pivots at distance [𝑅, 2𝑅]

• Connect to one of them uniformly at random

• Would expect 𝑂(log 𝑛) changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)

11

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node’s pivot?

Non-working approach:

• Keep track of pivots at distance [𝑅, 2𝑅]

• Connect to one of them uniformly at random

• Would expect 𝑂(log 𝑛) changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)

11

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node’s pivot?

Non-working approach:

• Keep track of pivots at distance [𝑅, 2𝑅]

• Connect to one of them uniformly at random

• Would expect 𝑂(log 𝑛) changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)

11

Challenges for Decremental Setting

Key challenge:
How to avoid too many changes of a node’s pivot?

Non-working approach:

• Keep track of pivots at distance [𝑅, 2𝑅]

• Connect to one of them uniformly at random

• Would expect 𝑂(log 𝑛) changes of pivot in that range

But: cannot simply maintain SSSP from set of pivots

(standard approach in Thorup-Zwick based constructions)

11

Questions

Decremental?

Worst-case update time?

12

