A Survey on Dynamic Algorithms

Sebastian Forster, né Krinninger University of Salzburg

@HALG (June 2025)

A Survey on Dynamic Distance Algorithms

Sebastian Forster, né Krinninger University of Salzburg

@HALG (June 2025)

Static Approach

Dynamic Environments

Intra-Algorithmic Motivation

Idea

Use dynamic algorithms as powerful data structures inside of static algorithms

Intra-Algorithmic Motivation

Idea

Use dynamic algorithms as powerful data structures inside of static algorithms

Successful Research Program

Design efficient flow optimization algorithm by combining **iterative methods** with **dynamic algorithms**

Intra-Algorithmic Motivation

Idea

Use dynamic algorithms as powerful data structures inside of static algorithms

Successful Research Program

Design efficient flow optimization algorithm by combining **iterative methods** with **dynamic algorithms**

Many highlights ranging from [Mądry '10] to [Chen, Kyng, Liu, Peng Probst Gutenberg, Sachdeva '22]

Input graph G

Algorithm

Distance Matrix

Input graph G

Adversary inserts and deletes edges

Algorithm

Distance Matrix

Distance Matrix

Adversary inserts and deletes edges

State of the Art

Amortized update time $\tilde{O}(n^2)$ [Demetrescu, Italiano '03]

 \emph{n} : #nodes, \emph{m} : #edges, edge weights polynomially bounded, constant ϵ

Five Regimes

- 1. ± 0 (exact)
- 2. $1 + \epsilon$ (almost exact)
- 3. $2 + \epsilon$ (small constant)
- 4. 2k 1 (large constant)
- 5. $\omega(1)$ (superconstant)

Five Regimes

- 1. ± 0 (exact)
- 2. $1 + \epsilon$ (almost exact)
- 3. $2 + \epsilon$ (small constant)
- 4. 2k 1 (large constant)
- 5. $\omega(1)$ (superconstant)

Stretch α :

$$d(u, v) \le \tilde{d}(u, v) \le \alpha \cdot d(u, v)$$

± 0 (exact)

Constant query time:

• Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])

Constant query time:

- Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])
- Worst-case update time $\tilde{O}(n^{2.5})$ (rand.) [Mao '24]
 - \rightarrow Framework of [Abraham, Chechik, K '16]

Constant query time:

- Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])
- Worst-case update time $\tilde{O}(n^{2.5})$ (rand.) [Mao '24]
 - → Framework of [Abraham, Chechik, K '16]
- Deterministic worst-case update time:
 - $\tilde{O}(n^{2+41/61})$ [Chechik, Zhang '23]
 - $\tilde{O}(n^{2.6})$ for unweighted [Probst Gutenberg, Wulff-Nilsen '20]

Constant query time:

- Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])
- Worst-case update time $\tilde{O}(n^{2.5})$ (rand.) [Mao '24] **Open:** tight?
 - → Framework of [Abraham, Chechik, K '16]
- Deterministic worst-case update time:
 - $\tilde{O}(n^{2+41/61})$ [Chechik, Zhang '23]
 - $\tilde{O}(n^{2.6})$ for unweighted [Probst Gutenberg, Wulff-Nilsen '20]

Constant query time:

- Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])
- Worst-case update time $\tilde{O}(n^{2.5})$ (rand.) [Mao '24] **Open:** tight?
 - → Framework of [Abraham, Chechik, K '16]
- Deterministic worst-case update time:
 - $\tilde{O}(n^{2+41/61})$ [Chechik, Zhang '23]
 - $\tilde{O}(n^{2.6})$ for unweighted [Probst Gutenberg, Wulff-Nilsen '20]

Trade-offs:

- Worst-case update/query time $O(n^{1.724})$ in unweighted graphs [Sankowsi '05; v.d. Brand, Nanongkai, Saranurak '19]
- Amortized update time $\tilde{O}(mn^2/t^2)$, query time O(t) (for $t \approx [n^{1/2}, n^{3/4}]$) in unweighted graphs [Roditty, Zwick '11]
- Worst-case update time $\tilde{O}(mn^{4/5})$, query time $\tilde{O}(n^{4/5})$ [Karczmarz, Sankowski '23]

Constant query time:

- Amortized update time $\tilde{O}(n^2)$ (det.) [Demetrescu, Italiano '03] (log-factor improvement by [Thorup '04])
- Worst-case update time $\tilde{O}(n^{2.5})$ (rand.) [Mao '24] **Open:** tight?
 - → Framework of [Abraham, Chechik, K '16]
- Deterministic worst-case update time:
 - $\tilde{O}(n^{2+41/61})$ [Chechik, Zhang '23]
 - $\tilde{O}(n^{2.6})$ for unweighted [Probst Gutenberg, Wulff-Nilsen '20]

Trade-offs:

- Worst-case update/query time $O(n^{1.724})$ in unweighted graphs [Sankowsi '05; v.d. Brand, Nanongkai, Saranurak '19]
- Amortized update time $\tilde{O}(mn^2/t^2)$, query time O(t) (for $t \approx [n^{1/2}, n^{3/4}]$) in unweighted graphs [Roditty, Zwick '11]
- Worst-case update time $\tilde{O}(mn^{4/5})$, query time $\tilde{O}(n^{4/5})$ [Karczmarz, Sankowski '23] **Open:** improved trade-offs?

ACK Framework: Preprocessing

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

ACK Framework: Preprocessing

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

ACK Framework: Preprocessing

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Observations:

All shortest paths not using heavy nodes included in trees

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Observations:

- All shortest paths not using heavy nodes included in trees
- Number of heavy nodes: $|H| \le O(\frac{|S|nh}{\lambda}) \le O(\frac{n^2h}{\lambda})$

Construct shortest path tree up to h edges for all sources one by one **counting** total size of subtrees for every node (idea of [Thorup '05]):

Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of **heavy** nodes H
- *v* is removed from graph, i.e., not considered in future trees

Observations:

- All shortest paths not using heavy nodes included in trees
- Number of heavy nodes: $|H| \le O(\frac{|S|nh}{\lambda}) \le O(\frac{n^2h}{\lambda})$
- Preprocessing time: $O(|S|n^2) \le O(n^3)$

1. For all deleted nodes: Reattach successors to tree \rightarrow Dijkstra

- 1. For all deleted nodes: Reattach successors to tree \rightarrow Dijkstra Running time: $\tilde{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

- 1. For all deleted nodes: Reattach successors to tree \rightarrow Dijkstra Running time: $\tilde{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

- 1. For all deleted nodes: Reattach successors to tree \to Dijkstra Running time: $\tilde{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

2. Additionally: shortest paths via heavy nodes

Compute $\min_{v \in H}(dist(s,v) + dist(v,t))$ for all s and t Time per deletion: $O(|H|n^2) = O(\frac{n^4h}{\lambda})$

- 1. For all deleted nodes: Reattach successors to tree \to Dijkstra Running time: $\tilde{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

2. Additionally: shortest paths via heavy nodes

Compute $\min_{v \in H}(dist(s,v) + dist(v,t))$ for all s and t Time per deletion: $O(|H|n^2) = O(\frac{n^4h}{\lambda})$

Fully dynamic can be reduced to bounded-hop batch-deletion

Unweighted graphs:

- Incremental: total update time $\tilde{O}(n^3)$ [Ausiello et al. 92]
- **Decremental:** total update time $\tilde{O}(n^3)$ [Demetrescu, Italiano '01; Baswana, Hariharan, Sen '02]
 - → Deterministic version: [Evald, Fredslund-Hansen, Probst Gutenberg, Wulff-Nilsen '21]

Unweighted graphs:

- Incremental: total update time $\tilde{O}(n^3)$ [Ausiello et al. 92]
- Decremental: total update time $\tilde{O}(n^3)$ [Demetrescu, Italiano '01; Baswana, Hariharan, Sen '02]
 - → Deterministic version: [Evald, Fredslund-Hansen, Probst Gutenberg, Wulff-Nilsen '21]

Lower bounds:

• Static time: $O(n^{2.575})$ [Zwick '02]

Unweighted graphs:

- Incremental: total update time $\tilde{O}(n^3)$ [Ausiello et al. 92]
- Decremental: total update time $\tilde{O}(n^3)$ [Demetrescu, Italiano '01; Baswana, Hariharan, Sen '02]
 - → Deterministic version: [Evald, Fredslund-Hansen, Probst Gutenberg, Wulff-Nilsen '21]

Lower bounds:

- Static time: $O(n^{2.575})$ [Zwick '02]
- $\Omega(n^3)$ changes to pairwise distance even in sparse graphs

Unweighted graphs:

- Incremental: total update time $\tilde{O}(n^3)$ [Ausiello et al. 92]
- **Decremental:** total update time $\tilde{O}(n^3)$ [Demetrescu, Italiano '01; Baswana, Hariharan, Sen '02]
 - → Deterministic version: [Evald, Fredslund-Hansen, Probst Gutenberg, Wulff-Nilsen '21]

Lower bounds:

- Static time: $O(n^{2.575})$ [Zwick '02]
- $\Omega(n^3)$ changes to pairwise distance even in sparse graphs
- No $O(n^{3-\delta})$ total update time with small query time based on OMv conjecture [Henzinger, K, Nanongkai, Saranurak '15]

Running time: O(degree(v)) per level increase of each node v

Running time: O(degree(v)) per level increase of each node v

Over all deletions for tree up to depth *D*:

$$O(\sum_{v} degree(v) \cdot D) = O(mD)$$

$1 + \epsilon$ (almost exact)

Regime 2: $1 + \epsilon$ (almost exact)

Partially dynamic:

- Decremental: randomized, total time $\tilde{O}(mn)$ in directed graphs [Bernstein '13]
- Decremental: determ., total time $O(mn^{1+o(1)})$ in undirected graphs via SSSP [Bernstein, Probst Gutenberg, Saranurak '21]
- Incremental: determ., total time $\tilde{O}(mn^{4/3})$ in directed graphs [Karczmarz, Łącki '19]

Regime 2: $1 + \epsilon$ (almost exact)

Partially dynamic:

- Decremental: randomized, total time $\tilde{O}(mn)$ in directed graphs [Bernstein '13]
- Decremental: determ., total time $O(mn^{1+o(1)})$ in undirected graphs via SSSP [Bernstein, Probst Gutenberg, Saranurak '21]
- Incremental: determ., total time $\tilde{O}(mn^{4/3})$ in directed graphs [Karczmarz, Łącki '19]

Fully dynamic:

- Update time $\tilde{O}(n^{2.045})$ [v.d. Brand, Nanongkai '19]
- Update time $O(n^{1.863})$, query time $O(n^{0.666})$ [v.d. Brand, Nanongkai '19]
- · Unweighted, undirected graphs
 - Update time $\tilde{O}(n^2)$ [v.d. Brand, Nanongkai '19]
 - Update time $O(n^{1.788})$, query time $O(n^{0.45})$ [v.d. Brand, F, Nazari '22]

Regime 2: $1 + \epsilon$

Trade-offs:

- Based on improved decremental APSP or SSSP algorithms (reduction)
- General form: Amortized update time mn/t, query time t
 - Randomized, unweighted, undirected graphs: [Roditty, Zwick '04]
 - Deterministic, unweighted, undirected graphs: [Henzinger, K, Nanongkai '13]
 - Randomized, weighted, directed graphs: [Bernstein '13]
 - Deterministic, weighted, undirected graphs: [Bernstein, Gutenberg, Saranurak '21]

🔑 Dynamic Inverse Maintenance: Idea

- $A \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k

Dynamic Inverse Maintenance: Idea

- $A \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F}=\mathbb{Z}_p$ of integers modulo large enough prime p

C Dynamic Inverse Maintenance: Idea

- $A \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F}=\mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h

- $A \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F}=\mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(I XA)^{-1} = \sum_{k=0}^{h-1} X^k A^k$

- $\mathbf{A} \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F} = \mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(\mathbf{I} X\mathbf{A})^{-1} = \sum_{k=0}^{h-1} X^k \mathbf{A}^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h

C Dynamic Inverse Maintenance: Idea

- $\mathbf{A} \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F}=\mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(\mathbf{I} X\mathbf{A})^{-1} = \sum_{k=0}^{h-1} X^k \mathbf{A}^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h
- Updating inverse after row/column update: $O(n^2)$ operations

- - $A \in \{0,1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
 - Entry $A_{s,t}^k$ contains the *number* of paths from s to t of length k
 - Consider field $\mathbb{F} = \mathbb{Z}_p$ of integers modulo large enough prime p
 - Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
 - Observation: $(\mathbf{I} X\mathbf{A})^{-1} = \sum_{k=0}^{h-1} X^k \mathbf{A}^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h
 - Updating inverse after row/column update: $O(n^2)$ operations Recall: Update solution to linear program after basis exchange

^C Dynamic Inverse Maintenance: Idea

- $\mathbf{A} \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F} = \mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(\mathbf{I} X\mathbf{A})^{-1} = \sum_{k=0}^{h-1} X^k \mathbf{A}^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h
- Updating inverse after row/column update: $O(n^2)$ operations Recall: Update solution to linear program after basis exchange
- Time per operation: $O(h \log p)$

Dynamic Inverse Maintenance: Idea

- $A \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F} = \mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(I XA)^{-1} = \sum_{k=0}^{h-1} X^k A^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h
- Updating inverse after row/column update: $O(n^2)$ operations Recall: Update solution to linear program after basis exchange
- Time per operation: $O(h \log p)$
 - $p = \Theta(n^h)$: suffices for $\leq n^h$ paths of length h

C Dynamic Inverse Maintenance: Idea

- $\mathbf{A} \in \{0, 1\}^{n \times n}$ adjacency matrix of unweighted, directed graph
- Entry $\mathbf{A}_{s,t}^k$ contains the *number* of paths from s to t of length k
- Consider field $\mathbb{F} = \mathbb{Z}_p$ of integers modulo large enough prime p
- Consider $\mathbb{F}[X]/X^h$, polynomial ring modulo X^h for given h
- Observation: $(I XA)^{-1} = \sum_{k=0}^{h-1} X^k A^k$
 - \Rightarrow Inverse contains all pairwise distances smaller than h
- Updating inverse after row/column update: $O(n^2)$ operations Recall: Update solution to linear program after basis exchange
- Time per operation: $O(h \log p)$
 - $p = \Theta(n^h)$: suffices for $\leq n^h$ paths of length h
 - Random $p = \Theta(n^c)$: degree zero check correct with high probability (Schwartz-Zippel Lemma)

🔑 Dynamic Inverse Maintenance: Literature

Sophisticated lazy update schemes

- for maintaining submatrix (row, column, entry, ...)
- · using fast matrix multiplication
- leading to update/query trade-offs

```
[King Sagert '99]
[Demetrescu, Italiano '00]
[Demetrescu, Italiano '01]
[Sankowski '04]
[Sankowski '05]
[v.d. Brand, Nangongkai, Saranurak '19]
[v.d. Brand, Forster, Nazari, Polak '24]
```

$2 + \epsilon$ (small constant)

This regime is not very well explored!

• Fully dynamic: stretch $2+\epsilon$, update time $m^{1+o(1)}$ weighted graphs [Bernstein '09]

This regime is not very well explored!

• Fully dynamic: stretch $2+\epsilon$, update time $m^{1+o(1)}$ weighted graphs [Bernstein '09]

Nowadays: reduction to decremental SSSP [Henzinger, K, Nanongkai '14; Bernstein, Probst Gutenberg, Saranurak '21]

- Fully dynamic: stretch $2+\epsilon$, update time $m^{1+o(1)}$ weighted graphs [Bernstein '09] Nowadays: reduction to decremental SSSP [Henzinger, K, Nanongkai
 - '14; Bernstein, Probst Gutenberg, Saranurak '21]
- Decremental: stretch 2, total update time $\tilde{O}(n^{2.5})$ unweighted graphs [Henzinger, K, Nanongkai '13]
 - Follows from *near-additive* stretch guarantee: $(1 + \epsilon, 2)$

- Fully dynamic: stretch $2 + \epsilon$, update time $m^{1+o(1)}$ weighted graphs [Bernstein '09]

 Nowadays: reduction to decremental SSSP [Henzinger, K, Nanongkai '14; Bernstein, Probst Gutenberg, Saranurak '21]
- Decremental: stretch 2, total update time $\tilde{O}(n^{2.5})$ unweighted graphs [Henzinger, K, Nanongkai '13]
 - Follows from *near-additive* stretch guarantee: $(1 + \epsilon, 2)$
 - Follow-up: stretch $(1+\epsilon,2(k-1))$, total update time $O(n^{2-1/k}+m^{1/k+o(1)})$ [Dory, F, Nazari, de Vos '24]

- Fully dynamic: stretch $2+\epsilon$, update time $m^{1+o(1)}$ weighted graphs [Bernstein '09] Nowadays: reduction to decremental SSSP [Henzinger, K, Nanongkai '14; Bernstein, Probst Gutenberg, Saranurak '21]
- Decremental: stretch 2, total update time $\tilde{O}(n^{2.5})$ unweighted graphs [Henzinger, K, Nanongkai '13]
 - Follows from *near-additive* stretch guarantee: $(1 + \epsilon, 2)$
 - Follow-up: stretch $(1+\epsilon,2(k-1))$, total update time $O(n^{2-1/k}+m^{1/k+o(1)})$ [Dory, F, Nazari, de Vos '24]
- Decremental: stretch $2+\epsilon$, total update time $\tilde{O}(m^{1/2}n^{3/2+o(1)})$ (weighted) or $\tilde{O}(m^{7/4})$ (unweighted) [Dory, F, Nazari, de Vos '24]

Typical problem: Large internal recourse leads to inefficiencies

Typical problem: Large internal recourse leads to inefficiencies

Example from decremental algorithm of [Dory et al. '24]

• Ball around every node v up to closest pivot in random set A of size pn

Typical problem: Large internal recourse leads to inefficiencies

- Ball around every node v up to closest pivot in random set A of size pn
- Each such ball has expected size $\leq \frac{1}{p}$

Typical problem: Large internal recourse leads to inefficiencies

- Ball around every node v up to closest pivot in random set A of size pn
- Each such ball has expected size $\leq \frac{1}{p}$
- By oblivious adversary: true in all versions of the graph

Typical problem: Large internal recourse leads to inefficiencies

- Ball around every node v up to closest pivot in random set A of size pn
- Each such ball has expected size $\leq \frac{1}{p}$
- · By oblivious adversary: true in all versions of the graph
- But: as size of closest pivot increases, new nodes enter the ball Naive total recourse bound (#nodes ever contained in ball): $\Omega(n)$

Typical problem: Large internal recourse leads to inefficiencies

- Ball around every node v up to closest pivot in random set A of size pn
- Each such ball has expected size $\leq \frac{1}{p}$
- · By oblivious adversary: true in all versions of the graph
- But: as size of closest pivot increases, new nodes enter the ball Naive total recourse bound (#nodes ever contained in ball): $\Omega(n)$
- **Solution:** Only update ball when distance to closest pivot increases by $(1 + \epsilon)$ -factor

Typical problem: Large internal recourse leads to inefficiencies

- Ball around every node v up to closest pivot in random set A of size pn
- Each such ball has expected size $\leq \frac{1}{p}$
- · By oblivious adversary: true in all versions of the graph
- But: as size of closest pivot increases, new nodes enter the ball Naive total recourse bound (#nodes ever contained in ball): $\Omega(n)$
- **Solution:** Only update ball when distance to closest pivot increases by $(1+\epsilon)$ -factor
 - \Rightarrow Total recourse: $\tilde{O}(\frac{1}{p}\log_{1+\epsilon}(nW))$

2k-1 (large constant)

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Conditional lower bound [Abboud, Bringmann, Fischer '23]

Stretch 2k - 1 requires update or query time of $\approx n^{1/k}$

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Conditional lower bound [Abboud, Bringmann, Fischer '23]

Stretch 2k - 1 requires update or query time of $\approx n^{1/k}$

Partially dynamic:

• Decremental with stretch $(2k-1)(1+\epsilon)$, total update time $\tilde{O}((m+n^{1+o(1)})n^{1/k})$ [Chechik '18; Łącki, Nazari '22]

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Conditional lower bound [Abboud, Bringmann, Fischer '23]

Stretch 2k - 1 requires update or query time of $\approx n^{1/k}$

Partially dynamic:

- Decremental with stretch $(2k-1)(1+\epsilon)$, total update time $\tilde{O}((m+n^{1+o(1)})n^{1/k})$ [Chechik '18; Łącki, Nazari '22]
- Decremental with stretch $(\log n)^{2^{1/\rho}}$, total update time $O(m^{1+O(\rho)}(\log n)^{O(1/\rho^2)})$ **deterministic** [Chuzhoy '21]

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Conditional lower bound [Abboud, Bringmann, Fischer '23]

Stretch 2k - 1 requires update or query time of $\approx n^{1/k}$

Partially dynamic:

- Decremental with stretch $(2k-1)(1+\epsilon)$, total update time $\tilde{O}((m+n^{1+o(1)})n^{1/k})$ [Chechik '18; Łącki, Nazari '22]
- Decremental with stretch $(\log n)^{2^{1/\rho}}$, total update time $O(m^{1+O(\rho)}(\log n)^{O(1/\rho^2)})$ **deterministic** [Chuzhoy '21]
- Decremental with stretch $n^{o(1)}$, total update time $m^{1+o(1)}$ **deterministic** [Bernstein, Probst Gutenberg, Saranurak '21]

Static [Thorup, Zwick '05]

Stretch 2k - 1, preprocessing time $O(mn^{1/k})$, query time O(k)

Conditional lower bound [Abboud, Bringmann, Fischer '23]

Stretch 2k - 1 requires update or query time of $\approx n^{1/k}$

Partially dynamic:

Saranurak '20]

- Decremental with stretch $(2k-1)(1+\epsilon)$, total update time $\tilde{O}((m+n^{1+o(1)})n^{1/k})$ [Chechik '18; Łącki, Nazari '22]
- Decremental with stretch $(\log n)^{2^{1/\rho}}$, total update time $O(m^{1+O(\rho)}(\log n)^{O(1/\rho^2)})$ **deterministic** [Chuzhoy '21]
- Decremental with stretch $n^{o(1)}$, total update time $m^{1+o(1)}$ **deterministic** [Bernstein, Probst Gutenberg, Saranurak '21]
- Incremental with stretch $(2k-1)^t$ and worst case update/query time $\tilde{O}(m^{1/(t+1)}n^{t/k})$ **deterministic** [Chen, Goranci, Henzinger, Peng,

Fully dynamic:

• Stretch $2^{O(\rho k)}$, update time $\tilde{O}(m^{1/2}n^{1/k})$, and query time $O(k^2\rho^2)$ (for $\rho=1+\lceil\log n^{1-1/k}/\log(m/n^{1-1/k})\rceil$) [Abraham, Chechik, Talwar '14]

- Stretch $2^{O(\rho k)}$, update time $\tilde{O}(m^{1/2}n^{1/k})$, and query time $O(k^2\rho^2)$ (for $\rho=1+\lceil\log n^{1-1/k}/\log(m/n^{1-1/k})\rceil$) [Abraham, Chechik, Talwar '14]
- Stretch $\tilde{O}(\log n)$, update/query time $O(m^{2/3+o(1)})$ [Chen, Goranci, Henzinger, Peng, Saranurak '20]

- Stretch $2^{O(\rho k)}$, update time $\tilde{O}(m^{1/2}n^{1/k})$, and query time $O(k^2\rho^2)$ (for $\rho=1+\lceil\log n^{1-1/k}/\log(m/n^{1-1/k})\rceil$) [Abraham, Chechik, Talwar '14]
- Stretch $\tilde{O}(\log n)$, update/query time $O(m^{2/3+o(1)})$ [Chen, Goranci, Henzinger, Peng, Saranurak '20]
- Stretch $(256/\rho^2)^{4/\rho}$, update time n^{ρ} , query time $n^{\rho/8}$ (for $0<\rho<1$) [F, Goranci, Nazari, Skarlatos '23]

- Stretch $2^{O(\rho k)}$, update time $\tilde{O}(m^{1/2}n^{1/k})$, and query time $O(k^2\rho^2)$ (for $\rho=1+\lceil\log n^{1-1/k}/\log(m/n^{1-1/k})\rceil$) [Abraham, Chechik, Talwar '14]
- Stretch $\tilde{O}(\log n)$, update/query time $O(m^{2/3+o(1)})$ [Chen, Goranci, Henzinger, Peng, Saranurak '20]
- Stretch $(256/\rho^2)^{4/\rho}$, update time n^{ρ} , query time $n^{\rho/8}$ (for $0<\rho<1$) [F, Goranci, Nazari, Skarlatos '23]
- Stretch $(\log\log n)^{2^{1/\rho^3}}$, update time $\tilde{O}(n^{O(\rho)})$, query time $\tilde{O}(2^{O(1/\rho)})$ **deterministic** (for $\frac{2}{(\log n)^{1/200}} < \rho < \frac{1}{400}$) [Chuzhoy, Zhang '23]

- Stretch $2^{O(\rho k)}$, update time $\tilde{O}(m^{1/2}n^{1/k})$, and query time $O(k^2\rho^2)$ (for $\rho=1+\lceil\log n^{1-1/k}/\log(m/n^{1-1/k})\rceil$) [Abraham, Chechik, Talwar '14]
- Stretch $\tilde{O}(\log n)$, update/query time $O(m^{2/3+o(1)})$ [Chen, Goranci, Henzinger, Peng, Saranurak '20]
- Stretch $(256/\rho^2)^{4/\rho}$, update time n^{ρ} , query time $n^{\rho/8}$ (for $0<\rho<1$) [F, Goranci, Nazari, Skarlatos '23]
- Stretch $(\log\log n)^{2^{1/\rho^3}}$, update time $\tilde{O}(n^{O(\rho)})$, query time $\tilde{O}(2^{O(1/\rho)})$ **deterministic** (for $\frac{2}{(\log n)^{1/200}} < \rho < \frac{1}{400}$) [Chuzhoy, Zhang '23]
- Stretch $2^{\text{poly}(1/\rho)}$, update time $O(n^{\rho})$, query time $O(\log\log n/\rho^4)$ (for $\frac{1}{\log^c n}<\rho<1$) **deterministic** + **worst case** [Haeupler, Long, Saranurak '24]

[Spielman, Teng '04] [Nanongkai, Saranurak, Wulff-Nilsen '17]

Partition of nodes into clusters C_1 , ..., C_k such that

- each $G[C_i]$ is a ϕ -expander
- #inter-cluster edges = $\phi m \log n$

[Spielman, Teng '04] [Nanongkai, Saranurak, Wulff-Nilsen '17]

Partition of nodes into clusters C_1 , ..., C_k such that

- each $G[C_i]$ is a ϕ -expander $\rightarrow \operatorname{Diam}(G[C_i]) = O(\log(m)/\phi)$
- #inter-cluster edges = $\phi m \log n$

[Spielman, Teng '04] [Nanongkai, Saranurak, Wulff-Nilsen '17]

Yes:

Partition of nodes into clusters C_1 , ..., C_k such that

- each $G[C_i]$ is a ϕ -expander
 - $\rightarrow \text{Diam}(G[C_i]) = O(\log(m)/\phi)$
- #inter-cluster edges = $\phi m \log n$

But:

- · Inherent logarithmic blowup
 - → Prohibitive for vertex sparsifier hierarchies

[Spielman, Teng '04] [Nanongkai, Saranurak, Wulff-Nilsen '17]

Yes:

Partition of nodes into clusters C_1 , ..., C_k such that

- each $G[C_i]$ is a ϕ -expander
 - $\rightarrow \text{Diam}(G[C_i]) = O(\log(m)/\phi)$
- #inter-cluster edges = $\phi m \log n$

But:

- Inherent logarithmic blowup
 - → Prohibitive for vertex sparsifier hierarchies
- Development of new types of decompositions

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** t of G = (V, E) is a subgraph H = (V, E') such that

$$dist_H(u, v) \le t \cdot dist_G(u, v)$$

for all pairs of nodes $u, v \in V$.

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** t of G = (V, E) is a subgraph H = (V, E') such that

$$dist_H(u, v) \le t \cdot dist_G(u, v)$$

for all pairs of nodes $u, v \in V$.

• Typical trade-off: stretch (2k-1), size $O(n^{1+1/k})$

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** t of G = (V, E) is a subgraph H = (V, E') such that

$$dist_H(u, v) \le t \cdot dist_G(u, v)$$

for all pairs of nodes $u, v \in V$.

- Typical trade-off: stretch (2k-1), size $O(n^{1+1/k})$
- Can run any sparsity-sensitive dynamic APSP algorithm on low-recourse spanner

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** t of G = (V, E) is a subgraph H = (V, E') such that

$$dist_H(u, v) \le t \cdot dist_G(u, v)$$

for all pairs of nodes $u, v \in V$.

- Typical trade-off: stretch (2k-1), size $O(n^{1+1/k})$
- Can run any sparsity-sensitive dynamic APSP algorithm on low-recourse spanner
- Many papers on dynamic spanners ranging from [Ausiello, Franciosa, Italiano '05] to [Chuzhoy, Parter '25]

Detour: Dynamic Spanner Algorithms

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** t of G = (V, E) is a subgraph H = (V, E') such that

$$dist_H(u, v) \le t \cdot dist_G(u, v)$$

for all pairs of nodes $u, v \in V$.

- Typical trade-off: stretch (2k-1), size $O(n^{1+1/k})$
- Can run any sparsity-sensitive dynamic APSP algorithm on low-recourse spanner
- Many papers on dynamic spanners ranging from [Ausiello, Franciosa, Italiano '05] to [Chuzhoy, Parter '25]
- Several open problems
- Techniques overlap with dynamic shortest paths
- · Additionally, the problem has a "local" flavor

$\omega(1)$ (superconstant)

Regime 5: Superconstant

Motivation:

- Subpolynomial update and query time
- Large stretch ok if it goes into running time of another algorithm

Regime 5: Superconstant

Motivation:

- · Subpolynomial update and query time
- Large stretch ok if it goes into running time of another algorithm

Partially dynamic:

- Decremental: Stretch $n^{o(1)}$, total update time $m^{1+o(1)}$ [Chuzhoy '21; Bernstein, Probst Gutenberg, Saranurak '21]
- Incremental: Stretch $\tilde{O}(1)$, total update time $\tilde{O}(m)$, query time $O(\log\log n)$ [F, Nazari, Probst Gutenberg '23]

Fully dynamic:

• Stretch $O(\log n)^{3k-2}$, update time time $m^{1/k+o(1)} \cdot O(\log n)^{4k-2}$, query time $O(k(\log n)^2)$ [F, Goranci, Henzinger '21]

Fully dynamic:

• Stretch $O(\log n)^{3k-2}$, update time time $m^{1/k+o(1)} \cdot O(\log n)^{4k-2}$, query time $O(k(\log n)^2)$ [F, Goranci, Henzinger '21] $n^{o(1)}, n^{o(1)}, n^{o(1)}$

Fully dynamic:

- Stretch $O(\log n)^{3k-2}$, update time time $m^{1/k+o(1)} \cdot O(\log n)^{4k-2}$, query time $O(k(\log n)^2)$ [F, Goranci, Henzinger '21] $n^{o(1)}, n^{o(1)}, n^{o(1)}$
- Stretch $n^{o(1)}$, update time $n^{o(1)}$, query $n^{o(1)}$ **deterministic** + **worst case** [Kyng, Meierhans, Probst Gutenberg '24]

Fully dynamic:

- Stretch $O(\log n)^{3k-2}$, update time time $m^{1/k+o(1)} \cdot O(\log n)^{4k-2}$, query time $O(k(\log n)^2)$ [F, Goranci, Henzinger '21] $n^{o(1)}, n^{o(1)}, n^{o(1)}$
- Stretch $n^{o(1)}$, update time $n^{o(1)}$, query $n^{o(1)}$ **deterministic** + **worst case** [Kyng, Meierhans, Probst Gutenberg '24]

Open Problem

Stretch $\tilde{O}(1)$, update time $\tilde{O}(1)$, query time $\tilde{O}(1)$

ASZ Construction

Initially developed for the PRAM model [Andoni, Stein, Zhong '20]

Overall setup:

- Hierarchy of $k = \Theta(\log \log n)$ sparsifiers: $G = H_1, H_2, ..., H_k$
- $|V(H_{i+1})| = |V(H_i)|/b_i$ for double exponentially increasing b_i 's

$$|V(H_i)| = O\left(\frac{n}{b_1 \cdot b_2 \cdot \dots \cdot b_{i-1}}\right)$$

$$|E(H_i)| \le m + O\left(\frac{n}{b_1 \cdot b_2 \cdot \dots \cdot b_{i-1}} \cdot b_i\right)$$

• H_i is an α -approximation of H_{i-1} for some constant α $\alpha^k = \operatorname{polylog} n$

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i

- Nodes of H_{i+1} : Randomized hitting set of size $\tilde{O}(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i
- $|E(H_{i+1})| \le |E(H_i)| + |V(H_i)| \cdot b_i$

- Nodes of H_{i+1} : Randomized hitting set of size $O(n/b_i)$
- Compute b_i-ball around each node (b_i closest nodes)
 b_i-ball of u contains sampled node p_i(u) ("pivot")
- "Ball edges": $(p_i(u), p_i(v))$ for every u and v in b_i -ball of u
- "Projected edges": $(p_i(u), p_i(v))$ for every edge (u, v) of H_i
- $|E(H_{i+1})| \le |E(H_i)| + |V(H_i)| \cdot b_i$

segment $y_{s-1} \rightarrow y_s$ approximated in H_{i+1} with multiplicative stretch α and additive stretch $d_{H_i}(y_s, p_i(y_s))$

Summary

- Each "regime" needs slightly different treatment
- · Old problems, many new techniques
- Similar stories for dynamic matching, dynamic connectivity, dynamic spanners, ...

Summary

- Each "regime" needs slightly different treatment
- · Old problems, many new techniques
- Similar stories for dynamic matching, dynamic connectivity, dynamic spanners, ...

Thank you!