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Input Output
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Dynamic Environments
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Intra-Algorithmic Motivation

Idea
Use dynamic algorithms as powerful data structures inside of
static algorithms

Successful Research Program
Design efficient flow optimization algorithm by combining
iterative methods with dynamic algorithms

Many highlights ranging from [Mądry ’10] to [Chen, Kyng, Liu, Peng

Probst Gutenberg, Sachdeva ’22]
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Dynamic Distance Maintenance

Input graph 𝐺 Algorithm Distance Matrix
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The Landscape of Dynamic Graph Algorithms

𝑛: #nodes, 𝑚: #edges, edge weights polynomially bounded, constant 𝜖
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Five Regimes

1. ±0 (exact)
2. 1 + 𝜖 (almost exact)
3. 2 + 𝜖 (small constant)
4. 2𝑘 − 1 (large constant)
5. 𝜔(1) (superconstant)

Stretch 𝛼:
𝑑(𝑢, 𝑣) ≤ 𝑑̃(𝑢, 𝑣) ≤ 𝛼 ⋅ 𝑑(𝑢, 𝑣)
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±0 (exact)



Regime 1: ±0 (exact)

Constant query time:
• Amortized update time 𝑂̃(𝑛2) (det.) [Demetrescu, Italiano ’03]

(log-factor improvement by [Thorup ’04])

• Worst-case update time 𝑂̃(𝑛2.5) (rand.) [Mao ’24]

Open: tight?

→ Framework of [Abraham, Chechik, K ’16]

• Deterministic worst-case update time:
• 𝑂̃(𝑛2+41/61) [Chechik, Zhang ’23]

• 𝑂̃(𝑛2.6) for unweighted [Probst Gutenberg, Wulff-Nilsen ’20]

Trade-offs:
• Worst-case update/query time 𝑂(𝑛1.724) in unweighted graphs

[Sankowsi ’05; v.d. Brand, Nanongkai, Saranurak ’19]

• Amortized update time 𝑂̃(𝑚𝑛2/𝑡2), query time 𝑂(𝑡) (for
𝑡 ≈ [𝑛1/2, 𝑛3/4]) in unweighted graphs [Roditty, Zwick ’11]

• Worst-case update time 𝑂̃(𝑚𝑛4/5), query time 𝑂̃(𝑛4/5)
[Karczmarz, Sankowski ’23] Open: improved trade-offs?
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� ACK Framework: Preprocessing

Construct shortest path tree up to ℎ edges for all sources one by one
counting total size of subtrees for every node (idea of [Thorup ’05]):

𝐺 𝐺 𝐺 ⧵ {𝑣} 𝐺 ⧵ {𝑣} 𝐺 ⧵ {𝑢, 𝑣}
s

1

v u
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v
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s
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u

s
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u

s
5

Rule: If number of nodes in subtrees of 𝑣 exceeds 𝜆:
• 𝑣 is added to set of heavy nodes 𝐻
• 𝑣 is removed from graph, i.e., not considered in future trees

Observations:
• All shortest paths not using heavy nodes included in trees

• Number of heavy nodes: |𝐻 | ≤ 𝑂( |𝑆|𝑛ℎ𝜆 ) ≤ 𝑂( 𝑛
2ℎ
𝜆 )

• Preprocessing time: 𝑂(|𝑆|𝑛2) ≤ 𝑂(𝑛3)
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� ACK Framework: Batch of Δ Vertex Deletions

𝐺 𝐺 𝐺 ⧵ {𝑣} 𝐺 ⧵ {𝑣} 𝐺 ⧵ {𝑢, 𝑣}
s

1

v u

s
2

v
u

s
3

u

s
4

u

s
5

1. For all deleted nodes: Reattach successors to tree → Dijkstra

Running time: 𝑂̃(Δ𝜆𝑛) per deletion
• Subtree size at most 𝜆 per node
• Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes
2. Additionally: shortest paths via heavy nodes

Compute min𝑣∈𝐻(𝑑𝑖𝑠𝑡(𝑠, 𝑣) + 𝑑𝑖𝑠𝑡(𝑣 , 𝑡)) for all 𝑠 and 𝑡
Time per deletion: 𝑂(|𝐻 |𝑛2) = 𝑂( 𝑛

4ℎ
𝜆 )

Fully dynamic can be reduced to bounded-hop batch-deletion
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Regime 1: ±0 (exact)

Unweighted graphs:

• Incremental: total update time 𝑂̃(𝑛3) [Ausiello et al. 92]

• Decremental: total update time 𝑂̃(𝑛3) [Demetrescu, Italiano ’01;

Baswana, Hariharan, Sen ’02]

→ Deterministic version: [Evald, Fredslund-Hansen, Probst Gutenberg,

Wulff-Nilsen ’21]

Lower bounds:

• Static time: 𝑂(𝑛2.575) [Zwick ’02]

• Ω(𝑛3) changes to pairwise distance even in sparse graphs

• No 𝑂(𝑛3−𝛿) total update time with small query time based on
OMv conjecture [Henzinger, K, Nanongkai, Saranurak ’15]
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� Decremental Shortest Path Tree [Even/Shiloach ’81]

level 0

level 1

level 2

level 3

𝑠

𝑏𝑎 𝑐

𝑑 𝑒

Running time: 𝑂(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) per level increase of each node 𝑣

Over all deletions for tree up to depth 𝐷:
𝑂 (∑𝑣 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) ⋅ 𝐷) = 𝑂(𝑚𝐷)
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1 + 𝜖 (almost exact)



Regime 2: 1 + 𝜖 (almost exact)

Partially dynamic:
• Decremental: randomized, total time 𝑂̃(𝑚𝑛) in directed graphs

[Bernstein ’13]

• Decremental: determ., total time 𝑂(𝑚𝑛1+𝑜(1)) in undirected
graphs via SSSP [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental: determ., total time 𝑂̃(𝑚𝑛4/3) in directed graphs
[Karczmarz, Łącki ’19]

Fully dynamic:
• Update time 𝑂̃(𝑛2.045) [v.d. Brand, Nanongkai ’19]

• Update time 𝑂(𝑛1.863), query time 𝑂(𝑛0.666) [v.d. Brand, Nanongkai

’19]

• Unweighted, undirected graphs
• Update time 𝑂̃(𝑛2) [v.d. Brand, Nanongkai ’19]

• Update time 𝑂(𝑛1.788), query time 𝑂(𝑛0.45) [v.d. Brand, F, Nazari ’22]
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Regime 2: 1 + 𝜖

Trade-offs:

• Based on improved decremental APSP or SSSP algorithms
(reduction)

• General form: Amortized update time 𝑚𝑛/𝑡, query time 𝑡
• Randomized, unweighted, undirected graphs: [Roditty, Zwick ’04]

• Deterministic, unweighted, undirected graphs: [Henzinger, K,

Nanongkai ’13]

• Randomized, weighted, directed graphs: [Bernstein ’13]

• Deterministic, weighted, undirected graphs: [Bernstein,

Gutenberg, Saranurak ’21]

13



� Dynamic Inverse Maintenance: Idea

• A ∈ {0, 1}𝑛×𝑛 adjacency matrix of unweighted, directed graph

• Entry A𝑘
𝑠,𝑡 contains the number of paths from 𝑠 to 𝑡 of length 𝑘

• Consider field 𝔽 = ℤ𝑝 of integers modulo large enough prime 𝑝

• Consider 𝔽[𝑋]/𝑋 ℎ, polynomial ring modulo 𝑋 ℎ for given ℎ

• Observation: (I − 𝑋A)−1 = ∑ℎ−1
𝑘=0 𝑋 𝑘A𝑘

⇒ Inverse contains all pairwise distances smaller than ℎ

• Updating inverse after row/column update: 𝑂(𝑛2) operations
Recall: Update solution to linear program after basis exchange

• Time per operation: 𝑂(ℎ log 𝑝)
• 𝑝 = Θ(𝑛ℎ): suffices for ≤ 𝑛ℎ paths of length ℎ
• Random 𝑝 = Θ(𝑛𝑐): degree zero check correct with high

probability (Schwartz-Zippel Lemma)
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• Observation: (I − 𝑋A)−1 = ∑ℎ−1
𝑘=0 𝑋 𝑘A𝑘

⇒ Inverse contains all pairwise distances smaller than ℎ

• Updating inverse after row/column update: 𝑂(𝑛2) operations

Recall: Update solution to linear program after basis exchange

• Time per operation: 𝑂(ℎ log 𝑝)
• 𝑝 = Θ(𝑛ℎ): suffices for ≤ 𝑛ℎ paths of length ℎ
• Random 𝑝 = Θ(𝑛𝑐): degree zero check correct with high

probability (Schwartz-Zippel Lemma)
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� Dynamic Inverse Maintenance: Literature

Sophisticated lazy update schemes

• for maintaining submatrix (row, column, entry, …)

• using fast matrix multiplication

• leading to update/query trade-offs

[King Sagert ’99]

[Demetrescu, Italiano ’00]

[Demetrescu, Italiano ’01]

[Sankowski ’04]

[Sankowski ’05]

[v.d. Brand, Nangongkai, Saranurak ’19]

[v.d. Brand, Forster, Nazari, Polak ’24]
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2 + 𝜖 (small constant)



Regime 3: 2 + 𝜖

This regime is not very well explored!

• Fully dynamic: stretch 2 + 𝜖, update time 𝑚1+𝑜(1) weighted
graphs [Bernstein ’09]

Nowadays: reduction to decremental SSSP [Henzinger, K, Nanongkai

’14; Bernstein, Probst Gutenberg, Saranurak ’21]

• Decremental: stretch 2, total update time 𝑂̃(𝑛2.5) unweighted
graphs [Henzinger, K, Nanongkai ’13]

• Follows from near-additive stretch guarantee: (1 + 𝜖, 2)
• Follow-up: stretch (1 + 𝜖, 2(𝑘 − 1)), total update time
𝑂(𝑛2−1/𝑘 + 𝑚1/𝑘+𝑜(1)) [Dory, F, Nazari, de Vos ’24]

• Decremental: stretch 2 + 𝜖, total update time 𝑂̃(𝑚1/2𝑛3/2+𝑜(1))
(weighted) or 𝑂̃(𝑚7/4) (unweighted) [Dory, F, Nazari, de Vos ’24]
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� Enforcing Monotonicity

Typical problem: Large internal recourse leads to inefficiencies

Example from decremental algorithm of [Dory et al. ’24]

• Ball around every node 𝑣 up to closest pivot in random set 𝐴 of size 𝑝𝑛

• Each such ball has expected size ≤ 1
𝑝

• By oblivious adversary: true in all versions of the graph
• But: as size of closest pivot increases, new nodes enter the ball

Naive total recourse bound (#nodes ever contained in ball): Ω(𝑛)
• Solution: Only update ball when distance to closest pivot increases

by (1 + 𝜖)-factor

⇒ Total recourse: 𝑂̃( 1
𝑝
log1+𝜖(𝑛𝑊 ))

𝑣𝑣

𝑢 ∈ 𝐴𝑢 ∈ 𝐴
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2𝑘 − 1 (large constant)



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]

18



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]

18



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]

18



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]

18



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]

18



Regime 4: 2𝑘 − 1 (large constant)

Static [Thorup, Zwick ’05]

Stretch 2𝑘 − 1, preprocessing time 𝑂(𝑚𝑛1/𝑘), query time 𝑂(𝑘)

Conditional lower bound [Abboud, Bringmann, Fischer ’23]

Stretch 2𝑘 − 1 requires update or query time of ≈ 𝑛1/𝑘

Partially dynamic:
• Decremental with stretch (2𝑘 − 1)(1 + 𝜖), total update time
𝑂̃((𝑚 + 𝑛1+𝑜(1))𝑛1/𝑘) [Chechik ’18; Łącki, Nazari ’22]

• Decremental with stretch (log 𝑛)2
1/𝜌

, total update time
𝑂(𝑚1+𝑂(𝜌)(log 𝑛)𝑂(1/𝜌

2)) deterministic [Chuzhoy ’21]

• Decremental with stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1)

deterministic [Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental with stretch (2𝑘 − 1)𝑡 and worst case update/query
time 𝑂̃(𝑚1/(𝑡+1)𝑛𝑡/𝑘) deterministic [Chen, Goranci, Henzinger, Peng,

Saranurak ’20]
18



Regime 4: 2𝑘 − 1 (large constant)

Fully dynamic:
• Stretch 2𝑂(𝜌𝑘), update time 𝑂̃(𝑚1/2𝑛1/𝑘), and query time
𝑂(𝑘2𝜌2) (for 𝜌 = 1 + ⌈log 𝑛1−1/𝑘/ log(𝑚/𝑛1−1/𝑘)⌉) [Abraham, Chechik,

Talwar ’14]

• Stretch 𝑂̃(log 𝑛), update/query time 𝑂(𝑚2/3+𝑜(1)) [Chen, Goranci,

Henzinger, Peng, Saranurak ’20]

• Stretch (256/𝜌2)4/𝜌, update time 𝑛𝜌, query time 𝑛𝜌/8 (for

0 < 𝜌 < 1) [F, Goranci, Nazari, Skarlatos ’23]

• Stretch (log log 𝑛)2
1/𝜌3

, update time 𝑂̃(𝑛𝑂(𝜌)), query time
𝑂̃(2𝑂(1/𝜌)) deterministic (for 2

(log 𝑛)1/200
< 𝜌 < 1

400
) [Chuzhoy, Zhang

’23]

• Stretch 2poly(1/𝜌), update time 𝑂(𝑛𝜌), query time
𝑂(log log 𝑛/𝜌4) (for 1

log𝑐 𝑛
< 𝜌 < 1) deterministic + worst case

[Haeupler, Long, Saranurak ’24]
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� Expander Decompositions

[Spielman, Teng ’04] [Nanongkai, Saranurak, Wulff-Nilsen ’17]

Yes:

Partition of nodes into clusters 𝐶1, …, 𝐶𝑘
such that

• each 𝐺[𝐶𝑖] is a 𝜙-expander

→ Diam(𝐺[𝐶𝑖]) = 𝑂(log(𝑚)/𝜙)

• #inter-cluster edges = 𝜙𝑚 log 𝑛

But:

• Inherent logarithmic blowup
→ Prohibitive for vertex sparsifier hierarchies

• Development of new types of decompositions

20
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Detour: Dynamic Spanner Algorithms

Definition ([Peleg, Schäffer ’89])
A spanner of stretch 𝑡 of 𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 = (𝑉 , 𝐸′)
such that

𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ 𝑡 ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣)

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

• Typical trade-off: stretch (2𝑘 − 1), size 𝑂(𝑛1+1/𝑘)
• Can run any sparsity-sensitive dynamic APSP algorithm on

low-recourse spanner
• Many papers on dynamic spanners

ranging from [Ausiello, Franciosa, Italiano ’05] to [Chuzhoy, Parter ’25]

• Several open problems
• Techniques overlap with dynamic shortest paths
• Additionally, the problem has a “local” flavor
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𝜔(1) (superconstant)



Regime 5: Superconstant

Motivation:

• Subpolynomial update and query time

• Large stretch ok if it goes into running time of another
algorithm

Partially dynamic:

• Decremental: Stretch 𝑛𝑜(1), total update time 𝑚1+𝑜(1) [Chuzhoy

’21; Bernstein, Probst Gutenberg, Saranurak ’21]

• Incremental: Stretch 𝑂̃(1), total update time 𝑂̃(𝑚), query time
𝑂(log log 𝑛) [F, Nazari, Probst Gutenberg ’23]
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Regime 5: 𝜔(1) (superconstant)

Fully dynamic:

• Stretch 𝑂(log 𝑛)3𝑘−2, update time time 𝑚1/𝑘+𝑜(1) ⋅ 𝑂(log 𝑛)4𝑘−2,
query time 𝑂(𝑘(log 𝑛)2) [F, Goranci, Henzinger ’21]

𝑛𝑜(1), 𝑛𝑜(1), 𝑛𝑜(1)

• Stretch 𝑛𝑜(1), update time 𝑛𝑜(1), query 𝑛𝑜(1) deterministic +
worst case [Kyng, Meierhans, Probst Gutenberg ’24]

Open Problem

Stretch 𝑂̃(1), update time 𝑂̃(1), query time 𝑂̃(1)
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� ASZ Construction

Initially developed for the PRAM model [Andoni, Stein, Zhong ’20]

Overall setup:

• Hierarchy of 𝑘 = Θ(log log 𝑛) sparsifiers: 𝐺 = 𝐻1, 𝐻2, … , 𝐻𝑘

• |𝑉 (𝐻𝑖+1)| = |𝑉 (𝐻𝑖)|/𝑏𝑖 for double exponentially increasing 𝑏𝑖’s

|𝑉 (𝐻𝑖)| = 𝑂 ( 𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

)

|𝐸(𝐻𝑖)| ≤ 𝑚 + 𝑂 ( 𝑛
𝑏1 ⋅ 𝑏2 ⋅ ⋯ ⋅ 𝑏𝑖−1

⋅ 𝑏𝑖)

• 𝐻𝑖 is an 𝛼-approximation of 𝐻𝑖−1 for some constant 𝛼
𝛼𝑘 = polylog 𝑛

24



� One Level of ASZ

• Nodes of 𝐻𝑖+1: Randomized hitting set of size 𝑂̃(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
• |𝐸(𝐻𝑖+1)| ≤ |𝐸(𝐻𝑖)| + |𝑉 (𝐻𝑖)| ⋅ 𝑏𝑖

segment 𝑦𝑠−1 → 𝑦𝑠 approximated in 𝐻𝑖+1 with multiplicative
stretch 𝛼 and additive stretch 𝑑𝐻𝑖(𝑦𝑠, 𝑝𝑖(𝑦𝑠))

25



� One Level of ASZ

• Nodes of 𝐻𝑖+1: Randomized hitting set of size 𝑂̃(𝑛/𝑏𝑖)
• Compute 𝑏𝑖-ball around each node (𝑏𝑖 closest nodes)
𝑏𝑖-ball of 𝑢 contains sampled node 𝑝𝑖(𝑢) (“pivot”)

• “Ball edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every 𝑢 and 𝑣 in 𝑏𝑖-ball of 𝑢
• “Projected edges”: (𝑝𝑖(𝑢), 𝑝𝑖(𝑣)) for every edge (𝑢, 𝑣) of 𝐻𝑖
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Summary

• Each “regime” needs slightly different treatment

• Old problems, many new techniques

• Similar stories for dynamic matching, dynamic connectivity,
dynamic spanners, …

Thank you!
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