Fast Dynamic Distance Computation via

Dynamic Spanners

Sebastian Forster

Habilitation Colloquium

University of Salzburg

Big Data

The three V’s

=JpacAr

Volume Velocity Variety

Graphs are Everywhere

Graphs are Everywhere

Graphs are Everywhere

o,
2
Sy e L
.

'4«44% e,

s"“‘““

Space Reduction

“Sketching”

Graph Sparsification

Graph Sparsification

Iy

Graph Sparsification

Goal: Reduce number of edges

Iy

Graph Sparsification

NS
S
\/
s
), EA‘ @AY
QS %
b' P
9%
<]
%
<N/

A\
7 X
[>

\/

27

Goal: Reduce number of edges

...at cost of approximation

Iy

Dynamic Algorithms

Static Approach

Input — ———— Output

Dynamic Sparsification

Problem Setting

Input graph G

s
LA
i
Ly

L

s

Algorithm

%

Sparsifier H

Problem Setting

Input graph G

s
iy

\
R
N

V

A“' [
VA&«‘;}
NV

Adversary inserts
and deletes edges

Algorithm

Sparsifier H

Problem Setting

Input graph G Algorithm Sparsifier H

o
I e
Vs,
Y

s

6=

Adversary inserts

and deletes edges

Problem Setting

Input graph G Algorithm Sparsifier H
% R

750 ‘}’
A'IM“A\ ~

Viavax />
K (7 &/
PANYy ,

SV
Adversary inserts Algorithm adds and

and deletes edges removes edges

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schaffer ’89])
A spanner of stretch t of G = (V, E) is a subgraph H = (V,E’)
such that

disto(u,v) < disty(u, v) < t - distg(u, v)

for all pairs of nodes u,v € V.

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schaffer ’89])
A spanner of stretch t of G = (V, E) is a subgraph H = (V,E’)
such that

disto(u,v) < disty(u, v) < t - distg(u, v)

for all pairs of nodes u,v € V.

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schaffer ’89])
A spanner of stretch t of G = (V, E) is a subgraph H = (V,E’)
such that

disto(u,v) < disty(u, v) < t - distg(u, v)

for all pairs of nodes u,v € V.

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schaffer ’89])
A spanner of stretch t of G = (V, E) is a subgraph H = (V,E’)
such that

disto(u,v) < disty(u, v) < t - distg(u, v)

for all pairs of nodes u,v € V.

TOU:

Discussion

Theorem
For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

Discussion

Theorem
For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n?)

Discussion

Theorem
For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph

Discussion

Theorem
For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph
o k = 2: stretch 3, size O(n3/2)

Discussion

Theorem
For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph
o k = 2: stretch 3, size O(n3/2)

« k =logn: stretch O(logn), size O(n)

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph
o k = 2: stretch 3, size O(n3/2)

« k =logn: stretch O(logn), size O(n)
Observation

This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdés.

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph
o k = 2: stretch 3, size O(n3/2)

« k =logn: stretch O(logn), size O(n)
Observation

This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdés.

Isn’t this type of stretch guarantee very weak?

Discussion

Theorem

For every integer k, every graph with n nodes admits a spanner of
stretcht = 2k — 1 with O(n'*1/k) edges.

« k = 1: stretch 1, size O(n®) — input graph
o k = 2: stretch 3, size O(n3/2)

« k =logn: stretch O(logn), size O(n)
Observation

This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdés.
Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation

[Becker, F, Karrenbauer, Lenzen '17]

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every k, there is a randomized dynamic algorithm that maintains
a spanner of stretcht = 2k — 1

. with O(nl“/kk8 log2 n) and O(7k/2) amortized update time,

« with O(n'*'/ klogn) edges and O(k* log® n) amortized update

time.

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every k, there is a randomized dynamic algorithm that maintains
a spanner of stretcht = 2k — 1

. with O(nl“/kk8 log2 n) and O(7k/2) amortized update time,

« with O(n'*'/ klogn) edges and O(k* log® n) amortized update

time.

Amortized time: Bound holds on average over a sequence of

updates

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every k, there is a randomized dynamic algorithm that maintains
a spanner of stretcht = 2k — 1

. with O(nl“/kk8 log2 n) and O(7k/2) amortized update time,

« with O(n'*'/ klogn) edges and O(k* log® n) amortized update

time.

Amortized time: Bound holds on average over a sequence of

updates

Worst-case time: Hard upper bound for each update

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every k, there is a randomized dynamic algorithm that maintains
a spanner of stretcht = 2k — 1

. with O(nlﬂ/kk8 log2 n) and O(7k/2) amortized update time,

« with O(n'*'/ klogn) edges and O(k* log® n) amortized update

time.

Amortized time: Bound holds on average over a sequence of
updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger *19])

For every k, there is a randomized dynamic algorithm that maintains
a (2k — 1)-spanner with O(n**'/Fklog” nloglog n) edges and
worst-case update time O(20K/% log® n).

Distance-Preserving Trees

Idea: Embed distance metric into tree metric

Distance-Preserving Trees

Idea: Embed distance metric into tree metric

Results: First dynamic algorithms for tree embeddings:
« Average stretch [F, Goranci ’19]
(Recent improvement: [Chechik, Zhang "20])
+ Expected stretch [F, Goranci, Henzinger 21]

Applications to distance oracles and buy-at-bulk network design

Example II: Cut-Preserving Sparsification

Definition ([Benczur/Karger *00])
A (1 + €)-cut sparsifier of G is a weighted subgraph H such that,
for every cut (C,V \ C), the edges F := E[C,V \ C] crossing the

cut have weight

(1 =€) - wo(F) < wy(F) < (1 +€) - wg(F)

Example II: Cut-Preserving Sparsification

Definition ([Benczur/Karger ’00])
A (1 + €)-cut sparsifier of G is a weighted subgraph H such that,
for every cut (C,V \ C), the edges F := E[C,V \ C] crossing the

cut have weight

(1 =€) - wo(F) < wy(F) < (1 +€) - wg(F)

A

Example II: Cut-Preserving Sparsification

Definition ([Benczur/Karger *00])
A (1 + €)-cut sparsifier of G is a weighted subgraph H such that,
for every cut (C,V \ C), the edges F := E[C,V \ C] crossing the

cut have weight

(1 =€) - wo(F) < wy(F) < (1 +€) - wg(F)

A

Example II: Cut-Preserving Sparsification

Definition ([Benczur/Karger ’00])
A (1 + €)-cut sparsifier of G is a weighted subgraph H such that,
for every cut (C,V \ C), the edges F := E[C,V \ C] crossing the

cut have weight

(1 =€) - wo(F) < wy(F) < (1 +€) - wg(F)

Our Result

Theorem ([Batson, Spielman, Srivastava "09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne~2)
edges.

Our Result

Theorem ([Batson, Spielman, Srivastava "09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne~2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Our Result

Theorem ([Batson, Spielman, Srivastava "09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne~2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])

There is a randomized dynamic algorithm for maintaining a

(1 + €)-cut sparsifier sparsifier with O(ne~? log n) edges in worst-case
time O(e % log’ n) per update.

Our Result

Theorem ([Batson, Spielman, Srivastava "09])

Every graph with n nodes admits a (1 + €)-cut sparsifier with O(ne~2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])

There is a randomized dynamic algorithm for maintaining a

(1 + €)-cut sparsifier sparsifier with O(ne~? log n) edges in worst-case
time O(e % log’ n) per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

Dynamic Distance Approximation

Towards Assumption-Free Algorithms

“Gold standard”:
« Fully dynamic

« Worst-case update time

o Deterministic

+ Meeting an update-time barrier

Towards Assumption-Free Algorithms

“Gold standard”:
« Fully dynamic

« Worst-case update time

o Deterministic

+ Meeting an update-time barrier

List of problems with such algorithms is small

Towards Assumption-Free Algorithms

“Gold standard”:
« Fully dynamic

« Worst-case update time

o Deterministic

+ Meeting an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + €)-approximate distance approximation in

unweighted, undirected graphs [van den Brand, F, Nazari ’22]

Our Results

Distance approximation in unweighted, undirected graphs:

[Approx | Type | Update Time |
1+e¢ single pair O(n1.407€—2)
14+ ¢ | single source O(n1'5296_2)
l1+e k sources | O(n'>%° + kn) - O(e_l)\/z log,/.n
1+e€ all pairs o(n?) - O(e—l)\/z log, /. n

Our Results

Distance approximation in unweighted, undirected graphs:

[Approx | Type | Update Time |
1+e¢ single pair O(n1.407€—2)
14+ ¢ | single source O(n1'5296_2)
l1+e k sources | O(n'>%° + kn) - O(e_l)\/z log,/.n
1+e€ all pairs o(n?) - O(e—l)\/z log, /. n

o Prior work was randomized

(and had worse update time in case of single pair)

Our Results

Distance approximation in unweighted, undirected graphs:

[Approx | Type | Update Time |
1+e¢ single pair O(n1.407€—2)
14+ ¢ | single source O(n1'5296_2)
l1+e k sources | O(n'>%° + kn) - O(e_l)\/z log,/.n
1+e€ all pairs o(n?) - O(e—l)\/z log, /. n

o Prior work was randomized

(and had worse update time in case of single pair)

» Update times match (conditional) lower bounds [van den

Brand, Nanongkai, Saranurak *19]

Our Results

Distance approximation in unweighted, undirected graphs:

[Approx | Type | Update Time |
1+e¢ single pair O(n1.407€—2)
14+ ¢ | single source O(n1'529e_2)
l1+e k sources | O(n'>%° + kn) - O(e_l)\/z log,/.n
1+e€ all pairs o(n?) - O(e—l)\/z log, /. n

o Prior work was randomized

(and had worse update time in case of single pair)

» Update times match (conditional) lower bounds [van den

Brand, Nanongkai, Saranurak *19]

Warm-up: Randomized (1 + €)-approximate single-source

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

Our Approach

Idea

Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > /n
« Maintain ©(1/€)-bounded distances to all nodes from hitting

set nodes and source node s

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > \n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > \n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')
« Compute (exact) single-source distances on H
- Return min(oAiG(s, v), dy(s, v)) for every node v

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

« Maintain hitting set for neighbors of nodes of degree > /n
« Maintain ©(1/€)-bounded distances to all nodes from hitting
set nodes and source node s
+ Additionally, after each update:
« Obtain ©(1/¢)-bounded distances dG(3
« Compute (1 + ¢, 2)-emulator H of size O(n')
« Compute (exact) single-source distances on H

- Return min(&fG(s, v), dy(s, v)) for every node v

Related work

Randomized algorithm for maintaining (1 + €, n°1)-spanner of
size n1 () with update time O(n!>?°) [Bergamaschi et al. ’21]

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > /n has at least one node of Sin its

neighborhood.

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > /n has at least one node of Sin its

neighborhood.

Randomized approach: Initially, sample a set of size ©(y7n)

uniformly at random [Ullman, Yannakakis *90]

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > /n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

VVV VY

Hitting Set
We maintain a set of nodes S C V of size O(y/n) such that every

heavy node of degree > /n has at least one node of Sin its
neighborhood.

Randomized approach: Initially, sample a set of size ©(\/n)

uniformly at random [Ullman, Yannakakis *90]

VVVVVY

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]
similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]
Lemma

Hisa(l+ % 2)-emulator of size O(n'-*)

Emulator Construction

Definition
A (1 + ¢, f)-emulator of G = (V,E) is a graph H = (V, E") such
that

distg(u, v) < distg(u,v) < (1 + €) - distg(u, v) + p

for all pairs of nodes u,v € V.

Emulator H has two types of edges:
« For every light node of degree < \/n: edges to all neighbors
« For every node in hitting set: (weighted) edges to all nodes in
distance < [6/€]
similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]
Lemma

Hisa(l+ % 2)-emulator of size O(n'-*)

— single-source distance on H in time O(n!-®) 18

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with

potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
.\Q ./.
A
Wy
Ay

. o - ¥ e ... o—o

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with

potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

- O—=O

« Case 2: Segment contains high-degree node

co®s

, @ /
Wy
Wy
N

. o - ¥ e ... o—o

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node

..
by
Wy
N

e ¥ e ..

— Detour of additive surplus 2

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 < 6/e+3 -1 +§

[6/e] = 6/e

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 6/e+3 _ €
[6/€] S 6/e 1+ 2
. If segment has length < [6/€], then additive error of 2

Approximation Guarantee

Subdivide any shortest path into segments of length [6/€] (with
potentially one segment of smaller length)

« Case 1: Segment contains no high-degree node

« Case 2: Segment contains high-degree node
X)

— Detour of additive surplus 2

o If segment has length [6/¢], then multiplicative error of
[6/€]+2 6/e+3 _ €
[6/€] S 6/e 1+ 2
. If segment has length < [6/€], then additive error of 2

Overall: multiplicative error of 1 + %, additive error of 2

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

20

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

« 091 denotes time needed for multiplying an n x n’
matrix with an n® x n matrix

20

Algebraic Data Structure

Theorem ([Sankowski ’05])

Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

« 091 denotes time needed for multiplying an n x n’
matrix with an n® x n matrix

« With § = 0.528..., update time is O(A(n'>% + n®*hy)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

« 091 denotes time needed for multiplying an n x n’

matrix with an n’

x n matrix

« With § = 0.528..., update time is O(A(n'>% + n®*hy)

« With A = Su{s}, B=V(where |S| = O(yn)), and A = O(1/e):
update time O(n'?° /¢)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

« O(n®1%1) denotes time needed for multiplying an n x n®

1

matrix with an n° x n matrix

« With § = 0.528..., update time is O(A(n'% + n®*hy)
« With A = Su{s}, B=V(where |S| = O(yn)), and A = O(1/e):
update time O(n'?° /¢)

Approximation Guarantee:

« If dg(s,v) < [6/€]: distance from algebraic data structure

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < § < 1 and any sets A, B C V, there is a randomized

algorithm for maintaining the S x V distances up to < A with update
time O(A(n®(10D=0 1 n1+9 4 | A||B))).

« O(n®1%1) denotes time needed for multiplying an n x n®

matrix with an n’

x n matrix

« With § = 0.528..., update time is O(A(n'% + n®*hy)

« With A = Su{s}, B=V(where |S| = O(yn)), and A = O(1/e):
update time O(n'?° /¢)

Approximation Guarantee:

« If dg(s,v) < [6/€]: distance from algebraic data structure
o If dg(s,v) > [6/¢€], then approximation from H becomes
(1+ g)dG(s, v)+2<(+ %)dG(s, V) + %dG(s, v) < (1 +€)dg(s,v)
20

Towards Deterministic Algorithm

Observations:

« Randomization not necessary in algebraic data structure for
very small distances

21

Towards Deterministic Algorithm

Observations:

« Randomization not necessary in algebraic data structure for
very small distances
« Hitting set for neighborhoods can be maintained with a lazy

approach giving low recourse

(Each update affects at most two neighborhoods!)

21

Towards Deterministic Algorithm

Observations:

« Randomization not necessary in algebraic data structure for
very small distances

« Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse

(Each update affects at most two neighborhoods!)

« Algebraic data structure can be extended to slowly changing

set of nodes

21

Conclusion

« Can we close the “qualitative” gaps between static and

dynamic sparsification?

22

« Can we close the “qualitative” gaps between static and
dynamic sparsification?

« For which problems can we reach the “gold standard”

22

« Can we close the “qualitative” gaps between static and
dynamic sparsification?
« For which problems can we reach the “gold standard”

« Are there “natural” separations?

22

23

	Big Data
	Dynamic Algorithms
	Dynamic Sparsification
	Dynamic Distance Approximation
	Conclusion

