Fast Dynamic Distance Computation via Dynamic Spanners

Sebastian Forster

Habilitation Colloquium

University of Salzburg

Big Data

The three V's

Variety

Volume

Velocity

Space Reduction

"Sketching"

 \approx

Goal: Reduce number of edges

Goal: Reduce number of edges

... at cost of approximation

Dynamic Algorithms

Dynamic Environments

Dynamic Sparsification

Sparsifier H

Algorithm

Sparsifier H

Adversary inserts and deletes edges

Adversary inserts and deletes edges

Adversary inserts and deletes edges

Algorithm adds and removes edges

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** *t* of G = (V, E) is a subgraph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq t \cdot dist_G(u, v)
```

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** *t* of G = (V, E) is a subgraph H = (V, E') such that

 $dist_G(u, v) \leq dist_H(u, v) \leq t \cdot dist_G(u, v)$

Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** *t* of G = (V, E) is a subgraph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq t \cdot dist_G(u, v)
```


Definition ([Peleg, Schäffer '89])

A **spanner** of **stretch** *t* of G = (V, E) is a subgraph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq t \cdot dist_G(u, v)
```


Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2)$

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

- k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph
- k = 2: stretch 3, size $O(n^{3/2})$

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

•
$$k = 2$$
: stretch 3, size $O(n^{3/2})$

• $k = \log n$: stretch $O(\log n)$, size O(n)

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

•
$$k = 2$$
: stretch 3, size $O(n^{3/2})$

• $k = \log n$: stretch $O(\log n)$, size O(n)

Observation

This stretch/size-tradeoff is tight under the **Girth Conjecture** by Erdős.

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

•
$$k = 2$$
: stretch 3, size $O(n^{3/2})$

• $k = \log n$: stretch $O(\log n)$, size O(n)

Observation

This stretch/size-tradeoff is tight under the **Girth Conjecture** by Erdős.

Isn't this type of stretch guarantee very weak?

Theorem

For every integer k, every graph with n nodes admits a spanner of stretch t = 2k - 1 with $O(n^{1+1/k})$ edges.

• k = 1: stretch 1, size $O(n^2) \rightarrow$ input graph

• $k = \log n$: stretch $O(\log n)$, size O(n)

Observation

This stretch/size-tradeoff is tight under the **Girth Conjecture** by Erdős.

Isn't this type of stretch guarantee very weak?

Distributed SSSP: **boosting** approach for better approximation [Becker, **F**, Karrenbauer, Lenzen '17]

Theorem ([Baswana, Khurana, Sarkar '12])

For every k, there is a randomized dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ and $O(7^{k/2})$ amortized update time,
- with O(n^{1+1/k}k log n) edges and O(k² log² n) amortized update time.

Theorem ([Baswana, Khurana, Sarkar '12])

For every k, there is a randomized dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ and $O(7^{k/2})$ amortized update time,
- with O(n^{1+1/k}k log n) edges and O(k² log² n) amortized update time.

Amortized time: Bound holds on average over a sequence of updates

Theorem ([Baswana, Khurana, Sarkar '12])

For every k, there is a randomized dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ and $O(7^{k/2})$ amortized update time,
- with O(n^{1+1/k}k log n) edges and O(k² log² n) amortized update time.

Amortized time: Bound holds on average over a sequence of updates

Worst-case time: Hard upper bound for each update

Theorem ([Baswana, Khurana, Sarkar '12])

For every k, there is a randomized dynamic algorithm that maintains a spanner of stretch t = 2k - 1

- with $O(n^{1+1/k}k^8 \log^2 n)$ and $O(7^{k/2})$ amortized update time,
- with O(n^{1+1/k}klog n) edges and O(k² log² n) amortized update time.

Amortized time: Bound holds on average over a sequence of updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger '19])

For every k, there is a randomized dynamic algorithm that maintains a (2k - 1)-spanner with $O(n^{1+1/k}k \log^7 n \log \log n)$ edges and worst-case update time $O(20^{k/2} \log^3 n)$.
Distance-Preserving Trees

Idea: Embed distance metric into tree metric

Distance-Preserving Trees

Idea: Embed distance metric into tree metric

Results: First dynamic algorithms for tree embeddings:

- Average stretch [F, Goranci '19] (Recent improvement: [Chechik, Zhang '20])
- Expected stretch [F, Goranci, Henzinger '21] Applications to distance oracles and buy-at-bulk network design

Definition ([Benczúr/Karger '00])

$$(1-\epsilon) \cdot w_G(F) \le w_H(F) \le (1+\epsilon) \cdot w_G(F)$$

Definition ([Benczúr/Karger '00])

$$(1-\epsilon) \cdot w_G(F) \le w_H(F) \le (1+\epsilon) \cdot w_G(F)$$

Definition ([Benczúr/Karger '00])

$$(1-\epsilon) \cdot w_G(F) \le w_H(F) \le (1+\epsilon) \cdot w_G(F)$$

Definition ([Benczúr/Karger '00])

$$(1-\epsilon) \cdot w_G(F) \le w_H(F) \le (1+\epsilon) \cdot w_G(F)$$

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with n nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with n nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with n nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Theorem ([Abraham, Durfee, Koutis, **K**, Peng '16]**)** There is a randomized dynamic algorithm for maintaining a $(1 \pm \epsilon)$ -cut sparsifier sparsifier with $O(n\epsilon^{-2} \log n)$ edges in worst-case time $O(\epsilon^{-2} \log^7 n)$ per update.

Theorem ([Batson, Spielman, Srivastava '09])

Every graph with n nodes admits a $(1 \pm \epsilon)$ -cut sparsifier with $O(n\epsilon^{-2})$ edges.

Connected to solving SDD linear systems! [Spielman, Teng '04]

Theorem ([Abraham, Durfee, Koutis, **K**, Peng '16]**)** There is a randomized dynamic algorithm for maintaining a $(1 \pm \epsilon)$ -cut sparsifier sparsifier with $O(n\epsilon^{-2} \log n)$ edges in worst-case time $O(\epsilon^{-2} \log^7 n)$ per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

Dynamic Distance Approximation

Towards Assumption-Free Algorithms

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic
- Meeting an update-time barrier

Towards Assumption-Free Algorithms

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic
- Meeting an update-time barrier

List of problems with such algorithms is small

Towards Assumption-Free Algorithms

"Gold standard":

- Fully dynamic
- Worst-case update time
- Deterministic
- · Meeting an update-time barrier

List of problems with such algorithms is small

Contribution

We add to this list: $(1 + \epsilon)$ -approximate distance approximation in unweighted, undirected graphs [van den Brand, **F**, Nazari '22]

Distance approximation in unweighted, undirected graphs:

Approx	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407}\epsilon^{-2})$
$1 + \epsilon$	single source	$O(n^{1.529}\epsilon^{-2})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$
$1 + \epsilon$	all pairs	$O(n^2) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$

Distance approximation in unweighted, undirected graphs:

Approx	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407}\epsilon^{-2})$
$1 + \epsilon$	single source	$O(n^{1.529}\epsilon^{-2})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$
$1 + \epsilon$	all pairs	$O(n^2) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$

· Prior work was randomized

(and had worse update time in case of single pair)

Distance approximation in unweighted, undirected graphs:

Approx	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407}\epsilon^{-2})$
$1 + \epsilon$	single source	$O(n^{1.529}\epsilon^{-2})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$
$1 + \epsilon$	all pairs	$O(n^2) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$

· Prior work was randomized

(and had worse update time in case of single pair)

• Update times match (conditional) lower bounds [van den Brand, Nanongkai, Saranurak '19]

Distance approximation in unweighted, undirected graphs:

Approx	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407}\epsilon^{-2})$
$1 + \epsilon$	single source	$O(n^{1.529}\epsilon^{-2})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$
$1 + \epsilon$	all pairs	$O(n^2) \cdot O(\epsilon^{-1})^{\sqrt{2\log_{1/\epsilon} n}}$

• Prior work was randomized

(and had worse update time in case of single pair)

 Update times match (conditional) lower bounds [van den Brand, Nanongkai, Saranurak '19]

Warm-up: *Randomized* $(1 + \epsilon)$ -approximate single-source

Idea

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain Θ(1/ε)-bounded distances to all nodes from hitting set nodes and source node s

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator *H* of size $\tilde{O}(n^{1.5})$

Idea

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator H of size $\tilde{O}(n^{1.5})$
 - Compute (exact) single-source distances on ${\cal H}$
 - Return $\min(\hat{d}_G(s, v), d_H(s, v))$ for every node v

Idea

Maintain sparsifier and recompute from scratch on sparsifier

- Maintain hitting set for neighbors of nodes of degree $\geq \sqrt{n}$
- Maintain $\Theta(1/\epsilon)$ -bounded distances to all nodes from hitting set nodes and source node *s*
- Additionally, after each update:
 - Obtain $\Theta(1/\epsilon)$ -bounded distances $\hat{d}_G(\cdot, \cdot)$
 - Compute $(1 + \epsilon, 2)$ -emulator H of size $\tilde{O}(n^{1.5})$
 - Compute (exact) single-source distances on H
 - Return $\min(\hat{d}_G(s, v), d_H(s, v))$ for every node v

Related work

Randomized algorithm for maintaining $(1 + \epsilon, n^{o(1)})$ -spanner of size $n^{1+o(1)}$ with update time $O(n^{1.529})$ [Bergamaschi et al. '21]

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> \sqrt{n}$ has at least one node of *S* in its neighborhood.

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> \sqrt{n}$ has at least one node of *S* in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

We maintain a set of nodes $S \subseteq V$ of size $\tilde{O}(\sqrt{n})$ such that every heavy node of degree $> \sqrt{n}$ has at least one node of S in its neighborhood.

Randomized approach: Initially, sample a set of size $\tilde{\Theta}(\sqrt{n})$ uniformly at random [Ullman, Yannakakis '90]

Definition

A $(1 + \epsilon, \beta)$ -**emulator** of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Definition

A $(1 + \epsilon, \beta)$ -emulator of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Definition

A $(1 + \epsilon, \beta)$ -emulator of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Lemma

H is a
$$(1 + \frac{\epsilon}{2}, 2)$$
-emulator of size $\tilde{O}(n^{1.5})$

Definition

A $(1 + \epsilon, \beta)$ -**emulator** of G = (V, E) is a graph H = (V, E') such that

```
dist_G(u, v) \leq dist_H(u, v) \leq (1 + \epsilon) \cdot dist_G(u, v) + \beta
```

```
for all pairs of nodes u, v \in V.
```

Emulator *H* has two types of edges:

- For every light node of degree $\leq \sqrt{n}$: edges to all neighbors
- For every node in hitting set: (weighted) edges to all nodes in distance $\leq \lceil 6/\epsilon \rceil$

similar to [Henzinger, K, Nanongkai '13; Dor, Halperin, Zwick '97]

Lemma

H is a
$$(1 + \frac{\epsilon}{2}, 2)$$
-emulator of size $\tilde{O}(n^{1.5})$

 \rightarrow single-source distance on *H* in time $\tilde{O}(n^{1.5})$

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 2: Segment contains high-degree node

• Case 1: Segment contains no high-degree node

• • • • • • •

• Case 2: Segment contains high-degree node

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

 \rightarrow Detour of additive surplus 2
Subdivide any shortest path into segments of length $\lceil 6/\epsilon \rceil$ (with potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$

Subdivide any shortest path into segments of length $\lceil 6/\epsilon \rceil$ (with potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$
 - If segment has length $< [6/\epsilon]$, then additive error of 2

Subdivide any shortest path into segments of length $\lceil 6/\epsilon \rceil$ (with potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node

• Case 2: Segment contains high-degree node

- \rightarrow Detour of additive surplus 2
 - If segment has length $\lceil 6/\epsilon \rceil$, then multiplicative error of $\leq \frac{\lceil 6/\epsilon \rceil + 2}{\lceil 6/\epsilon \rceil} \leq \frac{6/\epsilon + 3}{6/\epsilon} = 1 + \frac{\epsilon}{2}$
 - If segment has length $< [6/\epsilon]$, then additive error of 2

Overall: multiplicative error of $1 + \frac{\epsilon}{2}$, additive error of 2

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

• $O(n^{\omega(1,\delta,1)})$ denotes time needed for multiplying an $n \times n^{\delta}$ matrix with an $n^{\delta} \times n$ matrix

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

- $O(n^{\omega(1,\delta,1)})$ denotes time needed for multiplying an $n \times n^{\delta}$ matrix with an $n^{\delta} \times n$ matrix
- With $\delta = 0.528 \dots$, update time is $\tilde{O}(\Delta(n^{1.529} + n^{\alpha+\beta}))$

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

- $O(n^{\omega(1,\delta,1)})$ denotes time needed for multiplying an $n \times n^{\delta}$ matrix with an $n^{\delta} \times n$ matrix
- With $\delta = 0.528 \dots$, update time is $\tilde{O}(\Delta(n^{1.529} + n^{\alpha+\beta}))$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $\Delta = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

- $O(n^{\omega(1,\delta,1)})$ denotes time needed for multiplying an $n \times n^{\delta}$ matrix with an $n^{\delta} \times n$ matrix
- With $\delta = 0.528 \dots$, update time is $\tilde{O}(\Delta(n^{1.529} + n^{\alpha+\beta}))$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $\Delta = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Approximation Guarantee:

• If $d_G(s, v) \leq \lceil 6/\epsilon \rceil$: distance from algebraic data structure

Theorem ([Sankowski '05])

Given any $0 < \delta < 1$ and any sets $A, B \subseteq V$, there is a randomized algorithm for maintaining the $S \times V$ distances up to $\leq \Delta$ with update time $\tilde{O}(\Delta(n^{\omega(1,\delta,1)-\delta} + n^{1+\delta} + |A||B|))$.

- $O(n^{\omega(1,\delta,1)})$ denotes time needed for multiplying an $n \times n^{\delta}$ matrix with an $n^{\delta} \times n$ matrix
- With $\delta = 0.528 \dots$, update time is $\tilde{O}(\Delta(n^{1.529} + n^{\alpha+\beta}))$
- With $A = S \cup \{s\}$, B = V (where $|S| = \tilde{O}(\sqrt{n})$), and $\Delta = O(1/\epsilon)$: update time $O(n^{1.529}/\epsilon)$

Approximation Guarantee:

- If $d_G(s, v) \leq \lceil 6/\epsilon \rceil$: distance from algebraic data structure
- If $d_G(s, v) > \lceil 6/\epsilon \rceil$, then approximation from *H* becomes $(1 + \frac{\epsilon}{2})d_G(s, v) + 2 \le (1 + \frac{\epsilon}{2})d_G(s, v) + \frac{\epsilon}{3}d_G(s, v) \le (1 + \epsilon)d_G(s, v)$

Observations:

• Randomization not necessary in algebraic data structure for very small distances

Observations:

- Randomization not necessary in algebraic data structure for very small distances
- Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse (Each update affects at most two neighborhoods!)

Observations:

- Randomization not necessary in algebraic data structure for very small distances
- Hitting set for neighborhoods can be maintained with a lazy approach giving low recourse (Each update affects at most two neighborhoods!)
- Algebraic data structure can be extended to slowly changing set of nodes

Conclusion

• Can we close the "qualitative" gaps between static and dynamic sparsification?

- Can we close the "qualitative" gaps between static and dynamic sparsification?
- · For which problems can we reach the "gold standard"

- Can we close the "qualitative" gaps between static and dynamic sparsification?
- · For which problems can we reach the "gold standard"
- Are there "natural" separations?

Thank you!

