
Fast Dynamic Distance Computation via
Dynamic Spanners

Sebastian Forster

Habilitation Colloquium

University of Salzburg

Big Data

The three V’s

Volume Velocity Variety
1

Graphs are Everywhere

2

Graphs are Everywhere

2

Graphs are Everywhere

2

Graphs are Everywhere

2

Space Reduction

“Sketching”

≈

3

Graph Sparsification

→

Goal: Reduce number of edges

…at cost of approximation

4

Graph Sparsification

→

Goal: Reduce number of edges

…at cost of approximation

4

Graph Sparsification

→

Goal: Reduce number of edges

…at cost of approximation

4

Graph Sparsification

→

Goal: Reduce number of edges

…at cost of approximation

4

Dynamic Algorithms

Static Approach

Input Output

5

Dynamic Environments

6

Dynamic Sparsification

Problem Setting

Input graph 𝐺

Adversary inserts
and deletes edges

Algorithm Sparsifier 𝐻

Algorithm adds and
removes edges

7

Problem Setting

Input graph 𝐺

Adversary inserts
and deletes edges

Algorithm Sparsifier 𝐻

Algorithm adds and
removes edges

7

Problem Setting

Input graph 𝐺

Adversary inserts
and deletes edges

Algorithm Sparsifier 𝐻

Algorithm adds and
removes edges

7

Problem Setting

Input graph 𝐺

Adversary inserts
and deletes edges

Algorithm Sparsifier 𝐻

Algorithm adds and
removes edges

7

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schäffer ’89])
A spanner of stretch 𝑡 of 𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 = (𝑉 , 𝐸′)
such that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ 𝑡 ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣)

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

8

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schäffer ’89])
A spanner of stretch 𝑡 of 𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 = (𝑉 , 𝐸′)
such that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ 𝑡 ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣)

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

8

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schäffer ’89])
A spanner of stretch 𝑡 of 𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 = (𝑉 , 𝐸′)
such that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ 𝑡 ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣)

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

8

Example 1: Distance-Preserving Sparsification

Definition ([Peleg, Schäffer ’89])
A spanner of stretch 𝑡 of 𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 = (𝑉 , 𝐸′)
such that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ 𝑡 ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣)

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

8

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2)

→ input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph

• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)

⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Discussion

Theorem
For every integer 𝑘, every graph with 𝑛 nodes admits a spanner of
stretch 𝑡 = 2𝑘 − 1 with 𝑂(𝑛1+1/𝑘) edges.

• 𝑘 = 1: stretch 1, size 𝑂(𝑛2) → input graph
• 𝑘 = 2: stretch 3, size 𝑂(𝑛3/2)
⋮
• 𝑘 = log 𝑛: stretch 𝑂(log 𝑛), size 𝑂(𝑛)

Observation
This stretch/size-tradeoff is tight under the Girth Conjecture by
Erdős.

Isn’t this type of stretch guarantee very weak?

Distributed SSSP: boosting approach for better approximation
[Becker, F, Karrenbauer, Lenzen ’17]

9

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a spanner of stretch 𝑡 = 2𝑘 − 1

• with 𝑂(𝑛1+1/𝑘𝑘8 log2 𝑛) and 𝑂(7𝑘/2) amortized update time,

• with 𝑂(𝑛1+1/𝑘𝑘 log 𝑛) edges and 𝑂(𝑘2 log2 𝑛) amortized update
time.

Amortized time: Bound holds on average over a sequence of
updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger ’19])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a (2𝑘 − 1)-spanner with 𝑂(𝑛1+1/𝑘𝑘 log7 𝑛 log log 𝑛) edges and
worst-case update time 𝑂(20𝑘/2 log3 𝑛).

10

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a spanner of stretch 𝑡 = 2𝑘 − 1

• with 𝑂(𝑛1+1/𝑘𝑘8 log2 𝑛) and 𝑂(7𝑘/2) amortized update time,

• with 𝑂(𝑛1+1/𝑘𝑘 log 𝑛) edges and 𝑂(𝑘2 log2 𝑛) amortized update
time.

Amortized time: Bound holds on average over a sequence of
updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger ’19])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a (2𝑘 − 1)-spanner with 𝑂(𝑛1+1/𝑘𝑘 log7 𝑛 log log 𝑛) edges and
worst-case update time 𝑂(20𝑘/2 log3 𝑛).

10

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a spanner of stretch 𝑡 = 2𝑘 − 1

• with 𝑂(𝑛1+1/𝑘𝑘8 log2 𝑛) and 𝑂(7𝑘/2) amortized update time,

• with 𝑂(𝑛1+1/𝑘𝑘 log 𝑛) edges and 𝑂(𝑘2 log2 𝑛) amortized update
time.

Amortized time: Bound holds on average over a sequence of
updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger ’19])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a (2𝑘 − 1)-spanner with 𝑂(𝑛1+1/𝑘𝑘 log7 𝑛 log log 𝑛) edges and
worst-case update time 𝑂(20𝑘/2 log3 𝑛).

10

Our Spanner Results

Theorem ([Baswana, Khurana, Sarkar ’12])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a spanner of stretch 𝑡 = 2𝑘 − 1

• with 𝑂(𝑛1+1/𝑘𝑘8 log2 𝑛) and 𝑂(7𝑘/2) amortized update time,

• with 𝑂(𝑛1+1/𝑘𝑘 log 𝑛) edges and 𝑂(𝑘2 log2 𝑛) amortized update
time.

Amortized time: Bound holds on average over a sequence of
updates

Worst-case time: Hard upper bound for each update

Theorem ([Bernstein, F, Henzinger ’19])
For every 𝑘, there is a randomized dynamic algorithm that maintains
a (2𝑘 − 1)-spanner with 𝑂(𝑛1+1/𝑘𝑘 log7 𝑛 log log 𝑛) edges and
worst-case update time 𝑂(20𝑘/2 log3 𝑛).

10

Distance-Preserving Trees

Idea: Embed distance metric into tree metric

→

Results: First dynamic algorithms for tree embeddings:

• Average stretch [F, Goranci ’19]
(Recent improvement: [Chechik, Zhang ’20])

• Expected stretch [F, Goranci, Henzinger ’21]
Applications to distance oracles and buy-at-bulk network design

11

Distance-Preserving Trees

Idea: Embed distance metric into tree metric

→

Results: First dynamic algorithms for tree embeddings:

• Average stretch [F, Goranci ’19]
(Recent improvement: [Chechik, Zhang ’20])

• Expected stretch [F, Goranci, Henzinger ’21]
Applications to distance oracles and buy-at-bulk network design 11

Example II: Cut-Preserving Sparsification

Definition ([Benczúr/Karger ’00])
A (1 ± 𝜖)-cut sparsifier of 𝐺 is a weighted subgraph 𝐻 such that,
for every cut (𝐶, 𝑉 ⧵ 𝐶), the edges 𝐹 ∶= 𝐸[𝐶, 𝑉 ⧵ 𝐶] crossing the
cut have weight

(1 − 𝜖) ⋅ 𝑤𝐺(𝐹) ≤ 𝑤𝐻(𝐹) ≤ (1 + 𝜖) ⋅ 𝑤𝐺(𝐹)

12

Example II: Cut-Preserving Sparsification

Definition ([Benczúr/Karger ’00])
A (1 ± 𝜖)-cut sparsifier of 𝐺 is a weighted subgraph 𝐻 such that,
for every cut (𝐶, 𝑉 ⧵ 𝐶), the edges 𝐹 ∶= 𝐸[𝐶, 𝑉 ⧵ 𝐶] crossing the
cut have weight

(1 − 𝜖) ⋅ 𝑤𝐺(𝐹) ≤ 𝑤𝐻(𝐹) ≤ (1 + 𝜖) ⋅ 𝑤𝐺(𝐹)

12

Example II: Cut-Preserving Sparsification

Definition ([Benczúr/Karger ’00])
A (1 ± 𝜖)-cut sparsifier of 𝐺 is a weighted subgraph 𝐻 such that,
for every cut (𝐶, 𝑉 ⧵ 𝐶), the edges 𝐹 ∶= 𝐸[𝐶, 𝑉 ⧵ 𝐶] crossing the
cut have weight

(1 − 𝜖) ⋅ 𝑤𝐺(𝐹) ≤ 𝑤𝐻(𝐹) ≤ (1 + 𝜖) ⋅ 𝑤𝐺(𝐹)

12

Example II: Cut-Preserving Sparsification

Definition ([Benczúr/Karger ’00])
A (1 ± 𝜖)-cut sparsifier of 𝐺 is a weighted subgraph 𝐻 such that,
for every cut (𝐶, 𝑉 ⧵ 𝐶), the edges 𝐹 ∶= 𝐸[𝐶, 𝑉 ⧵ 𝐶] crossing the
cut have weight

(1 − 𝜖) ⋅ 𝑤𝐺(𝐹) ≤ 𝑤𝐻(𝐹) ≤ (1 + 𝜖) ⋅ 𝑤𝐺(𝐹)

12

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with 𝑛 nodes admits a (1 ± 𝜖)-cut sparsifier with 𝑂(𝑛𝜖−2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng ’04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])
There is a randomized dynamic algorithm for maintaining a
(1 ± 𝜖)-cut sparsifier sparsifier with 𝑂(𝑛𝜖−2 log 𝑛) edges in worst-case
time 𝑂(𝜖−2 log7 𝑛) per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

13

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with 𝑛 nodes admits a (1 ± 𝜖)-cut sparsifier with 𝑂(𝑛𝜖−2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng ’04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])
There is a randomized dynamic algorithm for maintaining a
(1 ± 𝜖)-cut sparsifier sparsifier with 𝑂(𝑛𝜖−2 log 𝑛) edges in worst-case
time 𝑂(𝜖−2 log7 𝑛) per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

13

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with 𝑛 nodes admits a (1 ± 𝜖)-cut sparsifier with 𝑂(𝑛𝜖−2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng ’04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])
There is a randomized dynamic algorithm for maintaining a
(1 ± 𝜖)-cut sparsifier sparsifier with 𝑂(𝑛𝜖−2 log 𝑛) edges in worst-case
time 𝑂(𝜖−2 log7 𝑛) per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

13

Our Result

Theorem ([Batson, Spielman, Srivastava ’09])

Every graph with 𝑛 nodes admits a (1 ± 𝜖)-cut sparsifier with 𝑂(𝑛𝜖−2)
edges.

Connected to solving SDD linear systems! [Spielman, Teng ’04]

Theorem ([Abraham, Durfee, Koutis, K, Peng ’16])
There is a randomized dynamic algorithm for maintaining a
(1 ± 𝜖)-cut sparsifier sparsifier with 𝑂(𝑛𝜖−2 log 𝑛) edges in worst-case
time 𝑂(𝜖−2 log7 𝑛) per update.

First dynamic algorithm for this problem

Spectral sparsifier with similar guarantees at cost of amortization

13

Dynamic Distance Approximation

Towards Assumption-Free Algorithms

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meeting an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari ’22]

14

Towards Assumption-Free Algorithms

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meeting an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari ’22]

14

Towards Assumption-Free Algorithms

“Gold standard”:
• Fully dynamic

• Worst-case update time

• Deterministic

• Meeting an update-time barrier

List of problems with such algorithms is small

Contribution
We add to this list: (1 + 𝜖)-approximate distance approximation in
unweighted, undirected graphs [van den Brand, F, Nazari ’22]

14

Our Results

Distance approximation in unweighted, undirected graphs:

Approx Type Update Time

1 + 𝜖 single pair 𝑂(𝑛1.407𝜖−2)
1 + 𝜖 single source 𝑂(𝑛1.529𝜖−2)

1 + 𝜖 𝑘 sources 𝑂(𝑛1.529 + 𝑘𝑛) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

1 + 𝜖 all pairs 𝑂(𝑛2) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

• Prior work was randomized
(and had worse update time in case of single pair)

• Update times match (conditional) lower bounds [van den
Brand, Nanongkai, Saranurak ’19]

Warm-up: Randomized (1 + 𝜖)-approximate single-source

15

Our Results

Distance approximation in unweighted, undirected graphs:

Approx Type Update Time

1 + 𝜖 single pair 𝑂(𝑛1.407𝜖−2)
1 + 𝜖 single source 𝑂(𝑛1.529𝜖−2)

1 + 𝜖 𝑘 sources 𝑂(𝑛1.529 + 𝑘𝑛) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

1 + 𝜖 all pairs 𝑂(𝑛2) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

• Prior work was randomized
(and had worse update time in case of single pair)

• Update times match (conditional) lower bounds [van den
Brand, Nanongkai, Saranurak ’19]

Warm-up: Randomized (1 + 𝜖)-approximate single-source

15

Our Results

Distance approximation in unweighted, undirected graphs:

Approx Type Update Time

1 + 𝜖 single pair 𝑂(𝑛1.407𝜖−2)
1 + 𝜖 single source 𝑂(𝑛1.529𝜖−2)

1 + 𝜖 𝑘 sources 𝑂(𝑛1.529 + 𝑘𝑛) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

1 + 𝜖 all pairs 𝑂(𝑛2) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

• Prior work was randomized
(and had worse update time in case of single pair)

• Update times match (conditional) lower bounds [van den
Brand, Nanongkai, Saranurak ’19]

Warm-up: Randomized (1 + 𝜖)-approximate single-source

15

Our Results

Distance approximation in unweighted, undirected graphs:

Approx Type Update Time

1 + 𝜖 single pair 𝑂(𝑛1.407𝜖−2)
1 + 𝜖 single source 𝑂(𝑛1.529𝜖−2)

1 + 𝜖 𝑘 sources 𝑂(𝑛1.529 + 𝑘𝑛) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

1 + 𝜖 all pairs 𝑂(𝑛2) ⋅ 𝑂(𝜖−1)√2 log1/𝜖 𝑛

• Prior work was randomized
(and had worse update time in case of single pair)

• Update times match (conditional) lower bounds [van den
Brand, Nanongkai, Saranurak ’19]

Warm-up: Randomized (1 + 𝜖)-approximate single-source

15

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting

set nodes and source node 𝑠
• Additionally, after each update:

• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)
• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]

16

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting

set nodes and source node 𝑠

• Additionally, after each update:
• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)
• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]

16

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting

set nodes and source node 𝑠
• Additionally, after each update:

• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)

• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]

16

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting

set nodes and source node 𝑠
• Additionally, after each update:

• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)
• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]

16

Our Approach

Idea
Maintain sparsifier and recompute from scratch on sparsifier

• Maintain hitting set for neighbors of nodes of degree ≥ √𝑛
• Maintain Θ(1/𝜖)-bounded distances to all nodes from hitting

set nodes and source node 𝑠
• Additionally, after each update:

• Obtain Θ(1/𝜖)-bounded distances �̂�𝐺(⋅, ⋅)
• Compute (1 + 𝜖, 2)-emulator 𝐻 of size �̃�(𝑛1.5)
• Compute (exact) single-source distances on 𝐻
• Return min(�̂�𝐺(𝑠, 𝑣), 𝑑𝐻(𝑠, 𝑣)) for every node 𝑣

Related work

Randomized algorithm for maintaining (1 + 𝜖, 𝑛𝑜(1))-spanner of
size 𝑛1+𝑜(1) with update time 𝑂(𝑛1.529) [Bergamaschi et al. ’21]

16

Hitting Set

Hitting Set

We maintain a set of nodes 𝑆 ⊆ 𝑉 of size �̃�(√𝑛) such that every
heavy node of degree > √𝑛 has at least one node of 𝑆 in its
neighborhood.

Randomized approach: Initially, sample a set of size Θ̃(√𝑛)
uniformly at random [Ullman, Yannakakis ’90]

… … … … … …

17

Hitting Set

Hitting Set

We maintain a set of nodes 𝑆 ⊆ 𝑉 of size �̃�(√𝑛) such that every
heavy node of degree > √𝑛 has at least one node of 𝑆 in its
neighborhood.

Randomized approach: Initially, sample a set of size Θ̃(√𝑛)
uniformly at random [Ullman, Yannakakis ’90]

… … … … … …

17

Hitting Set

Hitting Set

We maintain a set of nodes 𝑆 ⊆ 𝑉 of size �̃�(√𝑛) such that every
heavy node of degree > √𝑛 has at least one node of 𝑆 in its
neighborhood.

Randomized approach: Initially, sample a set of size Θ̃(√𝑛)
uniformly at random [Ullman, Yannakakis ’90]

… … … … … …

17

Hitting Set

Hitting Set

We maintain a set of nodes 𝑆 ⊆ 𝑉 of size �̃�(√𝑛) such that every
heavy node of degree > √𝑛 has at least one node of 𝑆 in its
neighborhood.

Randomized approach: Initially, sample a set of size Θ̃(√𝑛)
uniformly at random [Ullman, Yannakakis ’90]

… … … … … …

17

Emulator Construction

Definition
A (1 + 𝜖, 𝛽)-emulator of 𝐺 = (𝑉 , 𝐸) is a graph 𝐻 = (𝑉 , 𝐸′) such
that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ (1 + 𝜖) ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) + 𝛽

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

Emulator 𝐻 has two types of edges:

• For every light node of degree ≤ √𝑛: edges to all neighbors
• For every node in hitting set: (weighted) edges to all nodes in

distance ≤ ⌈6/𝜖⌉

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Lemma

𝐻 is a (1 + 𝜖
2 , 2)-emulator of size �̃�(𝑛1.5)

→ single-source distance on 𝐻 in time �̃�(𝑛1.5)

18

Emulator Construction

Definition
A (1 + 𝜖, 𝛽)-emulator of 𝐺 = (𝑉 , 𝐸) is a graph 𝐻 = (𝑉 , 𝐸′) such
that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ (1 + 𝜖) ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) + 𝛽

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

Emulator 𝐻 has two types of edges:

• For every light node of degree ≤ √𝑛: edges to all neighbors
• For every node in hitting set: (weighted) edges to all nodes in

distance ≤ ⌈6/𝜖⌉

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Lemma

𝐻 is a (1 + 𝜖
2 , 2)-emulator of size �̃�(𝑛1.5)

→ single-source distance on 𝐻 in time �̃�(𝑛1.5)

18

Emulator Construction

Definition
A (1 + 𝜖, 𝛽)-emulator of 𝐺 = (𝑉 , 𝐸) is a graph 𝐻 = (𝑉 , 𝐸′) such
that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ (1 + 𝜖) ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) + 𝛽

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

Emulator 𝐻 has two types of edges:

• For every light node of degree ≤ √𝑛: edges to all neighbors
• For every node in hitting set: (weighted) edges to all nodes in

distance ≤ ⌈6/𝜖⌉

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Lemma

𝐻 is a (1 + 𝜖
2 , 2)-emulator of size �̃�(𝑛1.5)

→ single-source distance on 𝐻 in time �̃�(𝑛1.5)

18

Emulator Construction

Definition
A (1 + 𝜖, 𝛽)-emulator of 𝐺 = (𝑉 , 𝐸) is a graph 𝐻 = (𝑉 , 𝐸′) such
that

𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ≤ 𝑑𝑖𝑠𝑡𝐻(𝑢, 𝑣) ≤ (1 + 𝜖) ⋅ 𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) + 𝛽

for all pairs of nodes 𝑢, 𝑣 ∈ 𝑉.

Emulator 𝐻 has two types of edges:

• For every light node of degree ≤ √𝑛: edges to all neighbors
• For every node in hitting set: (weighted) edges to all nodes in

distance ≤ ⌈6/𝜖⌉

similar to [Henzinger, K, Nanongkai ’13; Dor, Halperin, Zwick ’97]

Lemma

𝐻 is a (1 + 𝜖
2 , 2)-emulator of size �̃�(𝑛1.5)

→ single-source distance on 𝐻 in time �̃�(𝑛1.5) 18

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2

• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2

• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Approximation Guarantee

Subdivide any shortest path into segments of length ⌈6/𝜖⌉ (with
potentially one segment of smaller length)

• Case 1: Segment contains no high-degree node
…

• Case 2: Segment contains high-degree node

…

…

→ Detour of additive surplus 2
• If segment has length ⌈6/𝜖⌉, then multiplicative error of
≤ ⌈6/𝜖⌉+2

⌈6/𝜖⌉
≤ 6/𝜖+3

6/𝜖
= 1 + 𝜖

2
• If segment has length < ⌈6/𝜖⌉, then additive error of 2

Overall: multiplicative error of 1 + 𝜖
2 , additive error of 2

19

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix
• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):

update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix

• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):

update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix
• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))

• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):
update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix
• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):

update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix
• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):

update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure

• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Algebraic Data Structure

Theorem ([Sankowski ’05])
Given any 0 < 𝛿 < 1 and any sets 𝐴, 𝐵 ⊆ 𝑉, there is a randomized
algorithm for maintaining the 𝑆 × 𝑉 distances up to ≤ Δ with update
time �̃�(Δ(𝑛𝜔(1,𝛿,1)−𝛿 + 𝑛1+𝛿 + |𝐴||𝐵|)).

• 𝑂(𝑛𝜔(1,𝛿,1)) denotes time needed for multiplying an 𝑛 × 𝑛𝛿

matrix with an 𝑛𝛿 × 𝑛 matrix
• With 𝛿 = 0.528…, update time is �̃�(Δ(𝑛1.529 + 𝑛𝛼+𝛽))
• With 𝐴 = 𝑆 ∪ {𝑠}, 𝐵 = 𝑉 (where |𝑆| = �̃�(√𝑛)), and Δ = 𝑂(1/𝜖):

update time 𝑂(𝑛1.529/𝜖)

Approximation Guarantee:

• If 𝑑𝐺(𝑠, 𝑣) ≤ ⌈6/𝜖⌉: distance from algebraic data structure
• If 𝑑𝐺(𝑠, 𝑣) > ⌈6/𝜖⌉, then approximation from 𝐻 becomes
(1 + 𝜖

2)𝑑𝐺(𝑠, 𝑣) + 2 ≤ (1 + 𝜖
2)𝑑𝐺(𝑠, 𝑣) +

𝜖
3𝑑𝐺(𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺(𝑠, 𝑣)

20

Towards Deterministic Algorithm

Observations:

• Randomization not necessary in algebraic data structure for
very small distances

• Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse
(Each update affects at most two neighborhoods!)

• Algebraic data structure can be extended to slowly changing
set of nodes

21

Towards Deterministic Algorithm

Observations:

• Randomization not necessary in algebraic data structure for
very small distances

• Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse
(Each update affects at most two neighborhoods!)

• Algebraic data structure can be extended to slowly changing
set of nodes

21

Towards Deterministic Algorithm

Observations:

• Randomization not necessary in algebraic data structure for
very small distances

• Hitting set for neighborhoods can be maintained with a lazy
approach giving low recourse
(Each update affects at most two neighborhoods!)

• Algebraic data structure can be extended to slowly changing
set of nodes

21

Conclusion

Questions

• Can we close the “qualitative” gaps between static and
dynamic sparsification?

• For which problems can we reach the “gold standard”

• Are there “natural” separations?

22

Questions

• Can we close the “qualitative” gaps between static and
dynamic sparsification?

• For which problems can we reach the “gold standard”

• Are there “natural” separations?

22

Questions

• Can we close the “qualitative” gaps between static and
dynamic sparsification?

• For which problems can we reach the “gold standard”

• Are there “natural” separations?

22

Thank you!

23

	Big Data
	Dynamic Algorithms
	Dynamic Sparsification
	Dynamic Distance Approximation
	Conclusion

