Approximate Single-Source Shortest Paths:
Distributed and Dynamic Algorithms

Sebastian Krinninger
Max Planck Institute for Informatics

joint works with

Ruben Monika Andreas Christoph ~ Danupon
Becker Henzinger Karrenbauer Lenzen Nanongkai

24

dynamic algorithms distributed computing
|
distance problems

derandomization

lower bounds

cyclic games

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

3/24

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

@ Distributed algorithm: Deterministically compute approximate
shortest paths in n'/2%°" 4+ Diam'°" rounds [HKN 16]

3/24

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

@ Distributed algorithm: Deterministically compute approximate
shortest paths in n'/2%°" 4+ Diam'°" rounds [HKN 16]
Similar in spirit:

Multipass streaming: """ space with n°") passes [HKN *16]

3/24

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

@ Distributed algorithm: Deterministically compute approximate
shortest paths in n'/2%°" 4+ Diam'°" rounds [HKN 16]

Similar in spirit:

Multipass streaming: n'*°

() space with n°™" passes [HKN *16]

@ Dynamic algorithm: Maintain approximate shortest paths under edge
deletions with amortized update time n®M [HKN 14]

3/24

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

@ Distributed algorithm: Deterministically compute approximate
shortest paths in n'/2%°" 4+ Diam'°" rounds [HKN 16]
Similar in spirit:

Multipass streaming: n'*°

() space with n°™" passes [HKN *16]

@ Dynamic algorithm: Maintain approximate shortest paths under edge
deletions with amortized update time n®M [HKN 14]

Main technique: Iterative computation of hop set

3/24

One Problem — Two Results

(1 + €)-approximate single-source shortest paths (SSSP)

@ Distributed algorithm: Deterministically compute approximate
shortest paths in n'/2%°" 4+ Diam'°" rounds [HKN 16]
Similar in spirit:

Multipass streaming: n'*°

() space with n°™" passes [HKN *16]

@ Dynamic algorithm: Maintain approximate shortest paths under edge
deletions with amortized update time n®M [HKN 14]

Main technique: Iterative computation of hop set

This talk: constant e, positive integer edge weights polynomial in n

3/24

Hop Reduction

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u,v) < k - distg(u,v).

5/24

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u,v) < k - distg(u,v).

5/24

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u,v) < k - distg(u,v).

5/24

Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u,v) < k - distg(u,v).

Fact: Every graph has a k-spanner of size n"* 1k [Folklore]

Application: Running time T(m,n) = T(n””k,n)

5/24

Less Known: Hop Sets

Definition

An (h,€e)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Less Known: Hop Sets

Definition

An (h,€)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Less Known: Hop Sets

Definition

An (h,€)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Less Known: Hop Sets

Definition

An (h,€)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Fact: Every graph has a (log®" n,e) -hop set of size m'**") [Cohen '94]

Less Known: Hop Sets

Definition
An (h,€e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application?

@ Dijkstra: SSSP in time O(m + nlog n)
Not local (global heap), bad for non-centralized models

Less Known: Hop Sets

Definition
An (h,€e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application?

@ Dijkstra: SSSP in time O(m + nlog n)
Not local (global heap), bad for non-centralized models

@ Bellman-Ford: SSSP in time O(mn)
Actually: SSSP up to h hops in time O(mh)
With (n°Y¢) hop set: (1 + ¢)-approximate SSSP in time o(m'°M)
Approach used before in parallel setting [Cohen *94]

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajyq with probability 1/n1/k

v has priority i if ve A; \ Ajjq

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajyq with probability 1/n1/k

v has priority i if ve A; \ Ajjq

For every node u of priority i:

Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)}

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of

Aj goes to A, with probability 1/n'/*)
pr.i+1

v has priority i if ve A; \ Ajjq

®
For every node u of priority i: f °
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)} v @ "

pr. i

° o o

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of

Aj goes to A, with probability 1/n'/*)
pr.i+1

v has priority i if ve A; \ Ajjq
For every node u of priority i:

Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)} v

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of

Aj goes to A, with probability 1/n'/*)
pr.i+1]
v has priority i if ve A; \ Ajjq }@/—
For every node u of priority i: /
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)} \
pr!
Hop set:

@ (u,v) € Fiff v e Ball(u)

o w(u,v) = distg(u,v)

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of

Aj goes to A, with probability 1/n'/*)
pr.i+1]
v has priority i if ve A; \ Ajjq }Q/
For every node u of priority i: /
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)} \
pr)
priority # nodes
0 n
1-1/k
L n Hop set:
: : @ (u,v) € Fiff v e Ball(u)
k-1 n'/k

o w(u,v) = distg(u,v)

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of

Aj goes to A, with probability 1/n'/*)
pr.i+1]
v has priority i if ve A; \ Ajjq ?/—
For every node u of priority i: /
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)}
pr)
Expected size: nt*)/k
priority # nodes |Ball(u)]
0 n n'/k
1-1/k 2/k
! n n Hop set:
: : : @ (u,v) € Fiff v e Ball(u)
k-1 n'/k n

o w(u,v) = distg(u,v)

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajyq with probability 1/n1/k

pr.i+1 a
v has priority i if ve A; \ Ajjq ?/'
For every node u of priority i: /
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)}
pr)
Expected size: nt*)/k
priority # nodes |Ball(u)| # edges
0 n n/k 117k
1-1/k 2/k 1+1/k
L n n n Hop set:
: : : : @ (u,v) € Fiff v e Ball(u)
k-1 nl/k n ni+1/k

o w(u,v) = distg(u,v)

7/24

Simple Hop Set Based on Balls (following [Thorup/zwick *06])

V=A2A 2 -2 A = 0 where node of
Aj goes to Ajyq with probability 1/n1/k

pr.i+1 a
v has priority i if ve A; \ Ajjq ?/'
For every node u of priority i: /
Ball(u) = {v € V| dist(u,v) < dist(u,Aj+1)}
pr)
Expected size: nt*)/k
priority # nodes |Ball(u)| # edges
0 n n/k 117k
1-1/k 2/k 1+1/k
L n n n Hop set:
: : : : @ (u,v) € Fiff v e Ball(u)
k-1 nl/k n ni+1/k

R o w(u,v) = distg(u,v)

7/24

Parameter Choice

24

Parameter Choice

(

4

€

(o \/logn
- \log4/e

k
) _ ok = o)

24

(n1/2+0(1),€)-h0p set

Case 1: dist(up, v) < n'/?*k /e

9/24

(n"/27°M _¢)-hop set

Case 2: dist(ug,v) > n"/**V/k/e

9/24

(n"/27°M _¢)-hop set

Case 2: dist(ug,v) > n"/**V/k/e

= n”z
..--._..
12} Vo 4

o

9/24

(n"/27°M _¢)-hop set

Case 2: dist(ug,v) > n"/**V/k/e ro = n'/2

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

(n"/27°M _¢)-hop set

Case 2: dist(ug,v) > n"/**V/k/e

1/2

EDY

0<j<i

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

(n"/27°M _¢)-hop set

Case 2: dist(ug,v) > n"/**V/k/e

1/2

EDY

0<j<i

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

(n'#°0) ¢)-hop set
Case 2: dist(ug,v) > n"/**V/k/e _ a2
npo=n

> 2
£ r,-+1:(1+—)zrj
ks € —.
= 0<j<i
2
2
T N @m e mem @ e A e T e e [

Uo Yo Vi V2 v

decreasing distance to v

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

(n1/2+o(1)

,€)-hop set

Case 2: dist(ug,v) > n"/**V/k/e

increasing priority

N

Vi V2

= n”z
2
Fign = (1+ = Z i
€ —
0<j<i
< n'/2pVk

=~
I
<.o_
0]
=
-~
<}
oQ
SN
~
m

decreasing distance to v

S
7

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

Weight < (1 + €)dist(uy, V)

(n"/27°M _¢)-hop set
Case 2: dist(ug,v) > n"/**V/k/e _ a2
npo=n
2 2
: = (1+) 2
al| n 0<j<i
%D < n'/2n'lk
<
S k = +/logn/+/log4/e
uo--.-.llo :[...................................... V2 :

S
7

decreasing distance to v

For every node u of priority i and every node v, either (u,v) € H, or Au’ of
priority i + 1s. t. dist(u,u’) < dist(u,v).

Weight < (1 + €)dist(uy, V)
k - dist(u,v) < k-n _ PRYZ

n/2 = 2

#Edges <

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set

@ Compute hop set by
computing balls

© Computing balls at least as
hard as SSSP

= Back at problem we wanted
to solve initially?

10/24

Chicken-Egg Problem?

@ Goal: Faster SSSP via hop set =

@ Compute hop set by
computing balls

© Computing balls at least as

hard as SSSP ﬁr
= Back at problem we wanted ;
to solve initially? ’ .
— —

No! (n'/27°M ¢)-hop set only requires balls up to n'/2+o(

) hops J

10/24

(n"/27°M _¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/¥

11/24

(n"/27°M _¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute balls with k priorities in H; up to n** hops
F; = {(u,v) | v € Ball(u)}

end

return F = U F;

1<i<k

11/24

(n"/27°M _¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute balls with k priorities in H; up to n** hops
Fi = {(u,v) | v € Ball(u)}
end

return F = U F;

1<i<k

Error amplification: (1 + e < (1+e€)fore’ =1/(2e log n)

11/24

(n"/27°M _¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute balls with k priorities in H; up to n** hops
Fi = {(u,v) | v € Ball(u)}
end

return F = U F;

1<i<k
Error amplification: (1 + e < (1+e€)fore’ =1/(2e log n)

Omitted detail: weighted graphs, use rounding technique

Distributed Algorithm

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size O(log n)
Running time = number of rounds

@ Exact: O(n) (Bellman-Ford)

@ (1+ €)-approximation:

Q(n'?/ log n + Diam) [Das Sarma et al. "11]

O(e7"loge™): O(n'/**¢ + Diam) (randomized) [Lenzen, Patt-Shamir *13]
1+ e: O(n"'?Diam'"* + Diam) (randomized) [Nanongkai 14]

1+ e O(n"?*°" & Diam'°M) (deterministic) (New)

v

v

v

v

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

@ Exact: O(n) (Bellman-Ford)

@ (1+ €)-approximation:

Q(n'?/ log n + Diam) [Das Sarma et al. "11]

O(e7"loge™): O(n'/**¢ + Diam) (randomized) [Lenzen, Patt-Shamir *13]
1+ e: O(n"'?Diam'"* + Diam) (randomized) [Nanongkai 14]

1+ e O(n"?*°" & Diam'°M) (deterministic) (New)

vy VvV VvV VY

Our approach:

@ Compute overlay network

@ Compute hop set and approximate SSSP on overlay network

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

@ Exact: O(n) (Bellman-Ford)

@ (1+ €)-approximation:

Q(n'?/ log n + Diam) [Das Sarma et al. "11]

O(e7"loge™): O(n'/**¢ + Diam) (randomized) [Lenzen, Patt-Shamir *13]
1+ e: O(n"'?Diam'"* + Diam) (randomized) [Nanongkai 14]

1+ e O(n"?*°" & Diam'°M) (deterministic) (New)

v

v

v

v

Our approach:
@ Compute overlay network
Derandomization of “hitting paths” argument at cost of approximation

@ Compute hop set and approximate SSSP on overlay network
Deterministic hop set using greedy hitting set heuristic

Overlay Network

14/24

Overlay Network

Sample N = 5(n1/2) centers (+ source s)
= Every shortest path with > n'/? edges contains center whp

14/24

Overlay Network

Sample N = 5(n1/2) centers (+ source s)
= Every shortest path with > n'/? edges contains center whp
Solve SSSP on overlay network using hop set

14/24

Derandomization of Overlay Network

Randomization: Hit every shortest path with > +/n edges

(o)
z L . . o—(o)—e ®

5/24

Derandomization of Overlay Network

Randomization: Hit every shortest path with > +/n edges

(o)
z L . . o—(o)—e ® ° °

Deterministic relaxation: Almost hit every path > v/n edges

ed(u,v)
° ® ® ° ° ° ® °

<e

15/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

16/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

H DN

16/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

Broadcast level

16/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

Broadcast level

D iterations, each O(Diam + M¢) rounds where Mg = #nodes at level £
Running time: O(D - Diam + »" M) = O(D - Diam + N)
(<D

16/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

Broadcast level

D iterations, each O(Diam + M¢) rounds where Mg = #nodes at level £
Running time: O(D - Diam + »" M) = O(D - Diam + N)
(<D

Computing balls: 5(n”k - Diam + Z |Ball(v)|) = 5(n1/k - Diam + N'+1/ky J

16/24

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

Broadcast level

iy

D iterations, each O(Diam + M¢) rounds where Mg = #nodes at level £
Running time: O(D - Diam + »" M) = O(D - Diam + N)
(<D

Computing balls: 5(n”k - Diam + Z |Ball(v)|) = 5(n1/k - Diam + N'+1/ky J

= Hop Set and approximate SSSP: O(n'/27°(") 4 Diam'+°()

16/24

Dynamic Algorithm

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental
algorithm

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental‘1
algorithm

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Update

Decremental
algorithm

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

distg(s,v)?

Update

v

ey —

Decremental .

algorithm

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental
algorithm

s Update

v

/g}fﬂ/’)

distg(s,v)?

Answer: approximate shortest path of length

(s, v)

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental
algorithm

s Update

v

distg(s,v)?

Answer: approximate shortest path of length

distc(s,v) < 8(s,v) < (1+ e)distg(s,v)

18/24

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental
algorithm

s Update

time for all updates

v

distc(s.v)? " time per query

Answer: approximate shortest path of length

distc(s,v) < 8(s,v) < (1+ e)distg(s,v)

18/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]
@ (1+ €)-approx.: O(n2+°(”) (unweighted) [Bernstein/Roditty *11]

o New: O(m'°") (weighted) [Henzinger/K/Nanongkai *14]

19/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]
@ (1+ €)-approx.: O(n2+°(1)) (unweighted) [Bernstein/Roditty *11]

o New: O(m'°") (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:

19/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]
@ (1+ €)-approx.: O(n2+°(1)) (unweighted) [Bernstein/Roditty *11]

o New: O(m'°") (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:
@ Even-Shiloach: O(mD) for SSSP up to depth D

19/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]

Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]
@ (1+ €)-approx.: O(n2+°(1)) (unweighted) [Bernstein/Roditty *11]

o New: O(m'°") (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:
@ Even-Shiloach: O(mD) for SSSP up to depth D

@ Restart when distance to next priority changes

19/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]

@ (1+ €)-approx.: O(n2+°(1)) (unweighted) [Bernstein/Roditty *11]
@ New: O(mHO(U) (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:
@ Even-Shiloach: O(mD) for SSSP up to depth D
@ Restart when distance to next priority changes

@ Bounding number of nodes in balls not enough
All edges incident to balls go into running time
= Sample edges instead of nodes

19/24

Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]

@ (1+ €)-approx.: O(n2+°(1)) (unweighted) [Bernstein/Roditty *11]
@ New: O(mHO(U) (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:
@ Even-Shiloach: O(mD) for SSSP up to depth D
@ Restart when distance to next priority changes

@ Bounding number of nodes in balls not enough
All edges incident to balls go into running time
= Sample edges instead of nodes

@ Deletions-only problem, but edges might be added to hop set
Monotone ES-tree framework [Henzinger/K/Nanongkai 13]

19/24

New Approach

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.

21/24

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

21/24

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

21/24

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand —(n — 1), other nodes have demand 1

21/24

Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize ||Wx||; s.t.Ax=5b

22/24

Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize ||Wx||; s.t.Ax=5b

Dual program:

maximize b’y st [[W AT y|lo < 1

22/24

Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx||; s.t.Ax=5b
Dual program:
maximize bTy s.t. ||W_1ATy||00 <1
Equivalent:

minimize |W'ATy|le st. bTm =1

22/24

Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx||; s.t.Ax=5b
Dual program:
maximize bTy s.t. ||W_1ATy||oo <1
Equivalent:
minimize || W_1ATy||oo st.hmr=1
We approximate || - || by soft-max:

Isep(x) := % |n(z (e + e—ﬁx,-))

i€[d]

22/24

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

23/24

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

23/24

Gradient Descent

Algorithm at a glance:
@ Soft-max is differentiable — apply gradient descent

@ Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

@ Key observation: For b’, bad approximation is sufficient

23/24

Gradient Descent

Algorithm at a glance:

o
o
o

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on
overlay spanner
Spanner has stretch O(log n) and size O(n)

Gradient Descent

Algorithm at a glance:

o
o
o

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on

overlay spanner _
Spanner has stretch O(log n) and size O(n)

Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges

Conclusion

Main contributions:
@ Two almost tight algorithms

@ Combinatorial and algebraic tools

24/24

Conclusion

Main contributions:
@ Two almost tight algorithms

@ Combinatorial and algebraic tools

Open problems:

o Parallel: improve Cohen’s m'*o()

work with polylog depth?
o Better hop set? n°Y — log®" n

@ Deterministic dynamic SSSP algorithm
Vision: Dynamic algorithms as data structures inside other algorithms

@ Is O(n) rounds for exact distributed SSSP optimal?

24/24

