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One Problem – Two Results

(1 + ϵ )-approximate single-source shortest paths (SSSP)

1 Distributed algorithm: Deterministically compute approximate
shortest paths in n1/2+o(1) + Diam1+o(1) rounds [HKN ’16]

Similar in spirit:
Multipass streaming: n1+o(1) space with no(1) passes [HKN ’16]

2 Dynamic algorithm: Maintain approximate shortest paths under edge
deletions with amortized update time no(1) [HKN ’14]

Main technique: Iterative computation of hop set

This talk: constant ϵ , positive integer edge weights polynomial in n
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Hop Reduction
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Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH (u,v ) ≤ k · distG (u,v ).

Fact: Every graph has a k-spanner of size n1+1/k [Folklore]

Application: Running time T (m,n) ⇒ T (n1+1/k ,n)

5 / 24



Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH (u,v ) ≤ k · distG (u,v ).

Fact: Every graph has a k-spanner of size n1+1/k [Folklore]

Application: Running time T (m,n) ⇒ T (n1+1/k ,n)

5 / 24



Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH (u,v ) ≤ k · distG (u,v ).

Fact: Every graph has a k-spanner of size n1+1/k [Folklore]

Application: Running time T (m,n) ⇒ T (n1+1/k ,n)

5 / 24



Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v ,
distH (u,v ) ≤ k · distG (u,v ).

Fact: Every graph has a k-spanner of size n1+1/k [Folklore]

Application: Running time T (m,n) ⇒ T (n1+1/k ,n)

5 / 24



Less Known: Hop Sets

Definition
An (h,ϵ )-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v , in the ‘shortcut graph’ G ∪ F there is a path from u to v with at
most h edges of weight at most (1 + ϵ )dist (u,v ).

Application?

Dijkstra: SSSP in time O(m + n log n)
Not local (global heap), bad for non-centralized models

Bellman-Ford: SSSP in time O(mn)
Actually: SSSP up to h hops in time O(mh)
With (no(1) ,ϵ ) hop set: (1 + ϵ )-approximate SSSP in time O(m1+o(1) )
Approach used before in parallel se�ing [Cohen ’94]
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Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ where node of
Ai goes to Ai+1 with probability 1/n1/k

v has priority i if v ∈ Ai \ Ai+1

For every node u of priority i:

Ball (u) = {v ∈ V | dist (u,v ) < dist (u,Ai+1)}

Expected size: n(i+1)/k

priority # nodes |Ball (u) | # edges
0 n n1/k n1+1/k

1 n1−1/k n2/k n1+1/k

...
...

...
...

k − 1 n1/k n n1+1/k

kn1+1/k

pr. i

pr. i + 1

Hop set:
(u,v ) ∈ F i� v ∈ Ball (u)

w (u,v ) = distG (u,v )
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Parameter Choice

k =

√
log n√

log 4/ϵ

(4
ϵ

)k
= n1/k

= no(1)
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(n1/2+o(1),ϵ )-hop set
Case 1: dist (u0,v ) ≤ n1/2+1/k/ϵ

u0

u1

u2

v0 v1 v2

v

r0

r0

r1

r1 r2

decreasing distance to v

in
cr

ea
si

ng
pr

io
ri

ty

r0 = n1/2

ri+1 =

(
1 +

2
ϵ

) ∑
0≤j≤i

rj

≤ n1/2n1/k

k =
√

log n/
√

log 4/ϵ

For every node u of priority i and every node v , either (u,v ) ∈ H, or ∃u′ of
priority i + 1 s. t. dist (u,u′) ≤ dist (u,v ).

Weight ≤ (1 + ϵ )dist (u0,v )

#Edges ≤
k · dist (u,v )

n1/2
≤

k · n
n1/2

= kn1/2
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Chicken-Egg Problem?

1 Goal: Faster SSSP via hop set
2 Compute hop set by

computing balls
3 Computing balls at least as

hard as SSSP

⇒ Back at problem we wanted
to solve initially?

No! (n1/2+o(1) ,ϵ )-hop set only requires balls up to n1/2+o(1) hops
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(n1/2+o(1),ϵ )-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n1/k

Algorithm:
for i = 1 to k do

Hi = G ∪
⋃

1≤j≤i−1

Fj

Compute balls with k priorities in Hi up to n2/k hops
Fi = {(u,v ) | v ∈ Ball (u)}

end
return F =

⋃
1≤i≤k

Fi

Error amplification: (1 + ϵ ′)k ≤ (1 + ϵ ) for ϵ ′ = 1/(2ϵ log n)

Omi�ed detail: weighted graphs, use rounding technique
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Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

Exact: O(n) (Bellman-Ford)
(1 + ϵ )-approximation:
I Ω(n1/2/ log n + Diam) [Das Sarma et al. ’11]
I O(ϵ−1 log ϵ−1): O(n1/2+ϵ + Diam) (randomized) [Lenzen, Pa�-Shamir ’13]
I 1 + ϵ : O(n1/2Diam1/4 + Diam) (randomized) [Nanongkai ’14]
I 1 + ϵ : O(n1/2+o(1) + Diam1+o(1) ) (deterministic) (New)

Our approach:
1 Compute overlay network

Derandomization of “hi�ing paths” argument at cost of approximation

2 Compute hop set and approximate SSSP on overlay network

Deterministic hop set using greedy hi�ing set heuristic
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Overlay Network

Sample N = Õ(n1/2) centers (+ source s)
⇒ Every shortest path with ≥ n1/2 edges contains center whp
Solve SSSP on overlay network using hop set
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Sample N = Õ(n1/2) centers (+ source s)
⇒ Every shortest path with ≥ n1/2 edges contains center whp

Solve SSSP on overlay network using hop set

14 / 24



Overlay Network
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Derandomization of Overlay Network

Randomization: Hit every shortest path with ≥
√
n edges

u v

Deterministic relaxation: Almost hit every path ≥
√
n edges

u v

ϵd (u,v )
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Computing Hop Set on Overlay Network
Shortest paths from source s up to distance D:

...

Broadcast level

D iterations, each O(Diam +M` ) rounds where M` = #nodes at level `
Running time: O(D · Diam +

∑
l≤D

M` ) = O(D · Diam + N )

Computing balls: Õ(n1/k · Diam +
∑
v

|Ball (v ) |) = Õ(n1/k · Diam + N1+1/k )

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1) )
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|Ball (v ) |) = Õ(n1/k · Diam + N1+1/k )

⇒ Hop Set and approximate SSSP: O(n1/2+o(1) + Diam1+o(1) )

16 / 24



Computing Hop Set on Overlay Network
Shortest paths from source s up to distance D:

...

Broadcast level

D iterations, each O(Diam +M` ) rounds where M` = #nodes at level `
Running time: O(D · Diam +

∑
l≤D

M` ) = O(D · Diam + N )

Computing balls: Õ(n1/k · Diam +
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Dynamic Algorithm
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Decremental Approximate Shortest Path Problem

G undergoing deletions:

s

v

distG (s,v )?

Decremental
algorithm

Answer: approximate shortest path of length

distG (s,v ) ≤

δ (s,v )

≤ (1 + ϵ )distG (s,v )

Update

time for all updates

�ery

time per query
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Overview of Result

New result:
Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Ω(mn) [Rodi�y/Zwick ’04, Henzinger/K/Nanongkai/Saranurak ’15]

(1 + ϵ )-approx.: O(n2+o(1) ) (unweighted) [Bernstein/Rodi�y ’11]

New: O(m1+o(1) ) (weighted) [Henzinger/K/Nanongkai ’14]

Techniques for maintaining balls:

Even-Shiloach: O(mD) for SSSP up to depth D

Restart when distance to next priority changes

Bounding number of nodes in balls not enough
All edges incident to balls go into running time
⇒ Sample edges instead of nodes

Deletions-only problem, but edges might be added to hop set
Monotone ES-tree framework [Henzinger/K/Nanongkai ’13]
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New Approach
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New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])
There is a deterministic algorithm for computing (1 + ϵ ) approximate SSSP in
Õ(
√
n + Diam) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem
Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand −(n − 1), other nodes have demand 1
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Shortest Transshipment Problem
Shortest transshipment as linear program:

minimize ‖Wx ‖1 s.t. Ax = b

Dual program:

maximize bTy s.t. ‖W−1ATy ‖∞ ≤ 1

Equivalent:

minimize ‖W−1ATy ‖∞ s.t. bTπ = 1

We approximate ‖ · ‖∞ by so�-max:

lseβ (x ) :=
1
β

ln *.
,

∑
i∈[d]

(
eβxi + e−βxi

)+/
-
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Gradient Descent

Algorithm at a glance:
1 So�-max is di�erentiable→ apply gradient descent

2 Each iteration: solve transshipment problem with di�erent demand
vector b′ depending on current gradient

3 Key observation: For b′, bad approximation is su�icient
4 Compute spanner on overlay network and solving transshipment on

overlay spanner
Spanner has stretch O(log n) and size Õ(n)

5 Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of Õ(n) edges
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5 Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of Õ(n) edges
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5 Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of Õ(n) edges
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Conclusion

Main contributions:
Two almost tight algorithms

Combinatorial and algebraic tools

Open problems:
Parallel: improve Cohen’s m1+o(1) work with polylog depth?

Be�er hop set? no(1) → logO(1) n

Deterministic dynamic SSSP algorithm
Vision: Dynamic algorithms as data structures inside other algorithms

Is O(n) rounds for exact distributed SSSP optimal?
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