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Similar in spirit:

Multipass streaming: n'*°

() space with n°™" passes [HKN *16]

@ Dynamic algorithm: Maintain approximate shortest paths under edge
deletions with amortized update time n®M [HKN 14]

Main technique: Iterative computation of hop set

This talk: constant e, positive integer edge weights polynomial in n
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Well Known: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v,
disty(u,v) < k - distg(u,v).

Fact: Every graph has a k-spanner of size n"* 1k [Folklore]

Application: Running time T(m,n) = T(n””k,n)

5/24



Less Known: Hop Sets

Definition

An (h,€e)-hop set is a set of weighted edges F such that, for all pairs of nodes
u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).
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Definition
An (h,€e)-hop set is a set of weighted edges F such that, for all pairs of nodes

u and v, in the ‘shortcut graph’ G U F there is a path from u to v with at
most h edges of weight at most (1 + €)dist(u, v).

Application?

@ Dijkstra: SSSP in time O(m + nlog n)
Not local (global heap), bad for non-centralized models

@ Bellman-Ford: SSSP in time O(mn)
Actually: SSSP up to h hops in time O(mh)
With (n°Y¢) hop set: (1 + ¢)-approximate SSSP in time o(m'°M)
Approach used before in parallel setting [Cohen *94]
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@ Goal: Faster SSSP via hop set =

@ Compute hop set by
computing balls

© Computing balls at least as

hard as SSSP ﬁr
= Back at problem we wanted ;
to solve initially? ’ .
— —

No! (n'/27°M ¢)-hop set only requires balls up to n'/2+o(

) hops J
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(n"/27°M _¢)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of n'/¥

Algorithm:
fori=1to kdo

Compute balls with k priorities in H; up to n** hops
Fi = {(u,v) | v € Ball(u)}
end

return F = U F;

1<i<k
Error amplification: (1 + e < (1+e€)fore’ =1/(2e log n)

Omitted detail: weighted graphs, use rounding technique
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Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size O(log n)
Running time = number of rounds

@ Exact: O(n) (Bellman-Ford)

@ (1+ €)-approximation:

Q(n'?/ log n + Diam) [Das Sarma et al. "11]

O(e7"loge™): O(n'/**¢ + Diam) (randomized) [Lenzen, Patt-Shamir *13]
1+ e: O(n"'?Diam'"* + Diam) (randomized) [Nanongkai 14]

1+ e O(n"?*°" & Diam'°M) (deterministic) (New)
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SSSP in CONGEST model: synchronous rounds, message size O(log n)

Running time = number of rounds

@ Exact: O(n) (Bellman-Ford)
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1+ e O(n"?*°" & Diam'°M) (deterministic) (New)
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Our approach:
@ Compute overlay network
Derandomization of “hitting paths” argument at cost of approximation

@ Compute hop set and approximate SSSP on overlay network
Deterministic hop set using greedy hitting set heuristic
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Overlay Network

Sample N = 5(n1/2) centers (+ source s)
= Every shortest path with > n'/? edges contains center whp
Solve SSSP on overlay network using hop set
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Derandomization of Overlay Network

Randomization: Hit every shortest path with > +/n edges
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Derandomization of Overlay Network

Randomization: Hit every shortest path with > +/n edges

(o)
z L . . o—(o)—e ® ° °

Deterministic relaxation: Almost hit every path > v/n edges

ed(u,v)
° ® ® ° ° ° ® °

<e
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Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D:

Broadcast level

iy

D iterations, each O(Diam + M¢) rounds where Mg = #nodes at level £
Running time: O(D - Diam + »" M) = O(D - Diam + N)
(<D

Computing balls: 5(n”k - Diam + Z |Ball(v)|) = 5(n1/k - Diam + N'+1/ky J

= Hop Set and approximate SSSP: O(n'/27°(") 4 Diam'+°()
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Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental
algorithm

s Update

time for all updates

v

distc(s.v)? " time per query

Answer: approximate shortest path of length

distc(s,v) < 8(s,v) < (1+ e)distg(s,v)

18/24



Overview of Result

New result:

@ Exact: total update time O(mn) (unweighted) [Even/Shiloach ’81]
Q(mn) [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak 15]
@ (1+ €)-approx.: O(n2+°(”) (unweighted) [Bernstein/Roditty *11]

o New: O(m'°") (weighted) [Henzinger/K/Nanongkai *14]
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@ New: O(mHO(U) (weighted) [Henzinger/K/Nanongkai *14]

Techniques for maintaining balls:
@ Even-Shiloach: O(mD) for SSSP up to depth D
@ Restart when distance to next priority changes

@ Bounding number of nodes in balls not enough
All edges incident to balls go into running time
= Sample edges instead of nodes

@ Deletions-only problem, but edges might be added to hop set
Monotone ES-tree framework [Henzinger/K/Nanongkai 13]
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New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv’16])

There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.
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There is a deterministic algorithm for computing (1 + €) approximate SSSP in
O(V/n + Diam) rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to
sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

SSSP: source has demand —(n — 1), other nodes have demand 1
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Shortest Transshipment Problem

Shortest transshipment as linear program:

minimize ||Wx||; s.t.Ax=5b
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Shortest Transshipment Problem

Shortest transshipment as linear program:
minimize ||Wx||; s.t.Ax=5b
Dual program:
maximize bTy s.t. ||W_1ATy||oo <1
Equivalent:
minimize || W_1ATy||oo st.hmr=1
We approximate || - || by soft-max:

Isep(x) := % |n(z (e + e—ﬁx,-))

i€[d]
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Gradient Descent

Algorithm at a glance:

o
o
o

Soft-max is differentiable — apply gradient descent

Each iteration: solve transshipment problem with different demand
vector b’ depending on current gradient

Key observation: For b’, bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on

overlay spanner _
Spanner has stretch O(log n) and size O(n)

Overall: Polylog iterations, each solving O(log n)-approximate
transshipment on graph of O(n) edges



Conclusion

Main contributions:
@ Two almost tight algorithms

@ Combinatorial and algebraic tools
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Conclusion

Main contributions:
@ Two almost tight algorithms

@ Combinatorial and algebraic tools

Open problems:

o Parallel: improve Cohen’s m'*o()

work with polylog depth?
o Better hop set? n°Y — log®" n

@ Deterministic dynamic SSSP algorithm
Vision: Dynamic algorithms as data structures inside other algorithms

@ Is O(n) rounds for exact distributed SSSP optimal?
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