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𝑘-Center Clustering

𝑘-Center Problem
Given a metric space, select 𝑘 points as set of centers 𝐶 such that
the maximum distance 𝑑(𝐶, 𝑣) of any node 𝑣 to its closest center is
minimized.

• Assigning each point to its closest
center induces a partition into
clusters

• Radius of a cluster: Maximum
distance of the center to the nodes
in its cluster

• Problem is NP-hard to approximate
within a factor of 2 − 𝜖
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Metric Spaces and Graphs

Definition (Metric on Point Set)

1. Non-Negativity: 𝑑(𝑥, 𝑦) ≥ 0

2. Separation: 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦

3. Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

4. Triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

Pairwise shortest path distances of an undirected graph induce a
metric with nodes as the point set

Question
Are there efficient dynamic constant-factor approximation
algorithms for 𝑘-center if the metric is induced by a dynamically
changing undirected graph?
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Dynamic Model

Dynamic point sets:

• Point insertions and deletions

• Query access to metric

• Metric is extended/reduced

Dynamic graphs:

• Edge insertions and deletions

• Distances not given for free

• Metric is shrinking/expanding

Conclusion
Cannot use results for dynamic point sets in a black-box manner
for dynamic graph model
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Related Work

Static algorithms:
• Classic 2-approximation algorithms [Gonzalez ’85]

[Hochbaum, Shmoys ’85]
On graphs with 𝑛 nodes and 𝑚 edges: �̃�(𝑘𝑚) time

• State of the art on graphs: �̃�(𝑚) time (randomized)
[Thorup ’01] [Abboud et al. ’23]

Dynamic point sets:
• �̃�(𝑘2) update time [Chan, Gourqin, Sozio ’18]
• �̃�(𝑘) update time [Bateni et al. ’23]
• Special cases: [Schmidt, Sohler ’19] [Goranci et al. ’21]
• Consistent 𝑘-center [Lattanzi and Vassilvitskii ’12]

[Fichtenberger et al. ’21] [Łącki et al. ’23]

Natural goal: Update-time overhead of �̃�(𝑘) compared to dynamic
approximate SSSP
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Our Results I: Fully Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a fully dynamic (2 + 𝜖)-approximate 𝑘-center algorithm with
worst-case update time

• 𝑂(𝑘𝑛1.529𝜖−2) in unweighted graphs

• 𝑂(𝑘𝑛1.823𝜖−2) in weighted graphs

that is correct against an adaptive adversary.

Update time for fully dynamic (1 + 𝜖)-approximate SSSP:

• 𝑂(𝑛1.529𝜖−2) (unweighted) [v. d. Brand, F, Nazari ’22]
• 𝑂(𝑛1.823𝜖−2) (weighted) [v. d. Brand, Nanongkai ’19]
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Our Results II: Partially Dynamic

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a deterministic decremental (2 + 𝜖)-approximate 𝑘-center
algorithm with amortized update time 𝑘𝑛𝑜(1) (over a sequence of
Θ(𝑚) updates).

(in this talk: constant 𝜖, polynomially bounded integer edge weights)

Update time for decremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)

Theorem (Cruciani, F, Goranci, Nazari, Skarlatos ’23)
There is a randomized incremental (4 + 𝜖)-approximate 𝑘-center
algorithm with amortized update time 𝑘𝑛𝑜(1) that is correct against
an oblivious adversary.

Update time for incremental (1 + 𝜖)-approximate SSSP: 𝑛𝑜(1)
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Warm-Up: Fully Dynamic Algorithm



Reminder: Gonzalez’s Algorithm

Gonzalez’s Algorithm [Gonzalez ’85]

1. Initialize 𝐶 = {𝑣} with arbitrary first
center

2. While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝐶, 𝑣) to 𝐶

This gives a 2-approximation

If 𝑑(𝐶, 𝑣) is within factor 1 + 𝜖 of maximum, this gives
(2 + 𝜖)-approximation
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Reduction to SSSP: Simulating Gonzalez’s Algorithm

• Add artificial “super-source” 𝑠

• Maintain (1 + 𝜖)-approximate
single-source distances from 𝑠 with
a fully dynamic algorithm

with
algorithm working against
adaptive adversary

• After every update to graph:

• Forward update to SSSP data
structure

• Initialize 𝐶 = {𝑣} with arbitrary
first center and connect it to 𝑠

• While |𝐶| < 𝑘, add node 𝑣
maximizing 𝑑(𝑠, 𝑣) to 𝐶 and
connect it to 𝑠

Update Time: 𝑂(𝑘 ⋅ 𝑈SSSP(𝑛))

9
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Partially Dynamic Algorithms



𝑅-Independent Sets

Definition (𝑅-Independent Set)

• 𝐶 ⊆ 𝑉 such that 𝑑(𝑢, 𝑣) > 𝑅 for all 𝑢, 𝑣 ∈ 𝐶

• maximal if 𝐶 cannot be extended without violating the property

Greedy algorithm:

“𝑘-bounded maximal 𝑅-Independent set 𝐶”:
• |𝐶| < 𝑘 and |𝐶| is maximal or
• |𝐶| = 𝑘

10
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𝑘-CenterBased on𝑅-Independent Sets [Hochbaum, Shmoys ’85]

Goal: Find smallest value of 𝑅 such that maximal 𝑅-independent set
has size ≤ 𝑘

Algorithm:
• Obtain “guess” of 𝑅 by binary search or taking powers of 1 + 𝜖
• Compute maximal 𝑅-independent set 𝐶
• If |𝐶| > 𝑘, increase 𝑅
• If |𝐶| ≤ 𝑘, decrease 𝑅

Efficiency: Compute 𝑘-bounded maximal 𝑅-independent and check
if it is indeed maximal

Lemma ([Hochbaum, Shmoys ’85])
If 𝑅 ≥ 2𝑂𝑃𝑇𝑘, then every maximal 𝑅-independent set has size ≤ 𝑘

Again: (1 + 𝜖)-approximate distances lead to (2 + 𝜖)-approximation
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Decremental Algorithm

Observations

• Distances are non-decreasing over time

• 𝑅-independent set will always continue being an
𝑅-independent set

Algorithm
→ Increase guess for 𝑅 over time
→ Increase number of centers for current guess of 𝑅 over time
→ Maintain approximate decremental SSSP from super-source

connected to every center
• After each deletion:

• Forward update to SSSP data structure
• If there is a node with 𝑑(𝐶, 𝑣) > (1 + 𝜖)𝑅:

• If |𝐶| = 𝑘, then 𝑅 ← (1 + 𝜖)𝑅
• Otherwise: Add 𝑣 to 𝐶 and restart decremental SSSP
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Example and Running Time

Total update time: 𝑂(𝑘 log1+𝜖(𝑛Λ)) × 𝑇SSSP(𝑚)
• For each guess of 𝑅, |𝐶| increases at most 𝑘 times
• Decremental SSSP is restarted 𝑂(𝑘 log1+𝜖(𝑛Λ)) times, where Λ

is the aspect ratio of the graph

• 𝑇SSSP(𝑚) = 𝑚1+𝑜(1) [Henzinger, K, Nanongkai ’14], also
deterministically [Bernstein, Probst Gutenberg, Saranurak ’21]
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Incremental Algorithm

Observations

• Distances are non-increasing over time

• BUT: 𝑅-independent will not necessarily continue being an
𝑅-independent set

If insertion leads to conflict in 𝑅-independent set 𝐶, we need to
update/recompute 𝐶 because we want |𝐶| ≤ 𝑘

Efficiency Problem:
• Maintain approximate SSSP from every node in 𝐶
• Every change to 𝐶 is expensive!
→ Total update time time:
(#nodes ever contained in 𝐶) × 𝑚1+𝑜(1)

• Goal: Maintain 𝑅-independent sets with low total recourse
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MIS Abstraction [Bateni et al. ’23]

𝑅-neighborhood graph 𝐺𝑅: edge (𝑥, 𝑦)
if 𝑑(𝑥, 𝑦) ≤ 𝑅

Independent set in 𝐺𝑅
=

𝑅-independent set in original graph

Remarks:

• Neighborhood graph essentially an analysis tool, only
constructed partially

• “𝑘-bounded maximal independent set”

• Clean formal definition for algorithmically defined
approximate distances is tricky (but also not necessary)
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Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)

• Since input graph is incremental, neighborhood graph is
incremental with 𝑂(𝑛2) insertions

• Known dynamic MIS algorithms only provide 𝑂(1) (expected)
recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions

• Known dynamic MIS algorithms only provide 𝑂(1) (expected)
recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions
• Known dynamic MIS algorithms only provide 𝑂(1) (expected)

recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions
• Known dynamic MIS algorithms only provide 𝑂(1) (expected)

recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions
• Known dynamic MIS algorithms only provide 𝑂(1) (expected)

recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions
• Known dynamic MIS algorithms only provide 𝑂(1) (expected)

recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets to the Rescue

Goal:
• Maintain 𝑘-bounded MIS in neighborhood graph 𝐺𝑅 with total

recourse poly(𝑘)
• Since input graph is incremental, neighborhood graph is

incremental with 𝑂(𝑛2) insertions
• Known dynamic MIS algorithms only provide 𝑂(1) (expected)

recourse per update [Behnezhad et al. ’19] [Chechik, Zhang
’19]

Idea:
• Maintain dominating set 𝑆 on 𝐺𝑅 with

total recourse �̃�(𝑘)

• Maintain 𝑘-bounded MIS 𝐶 on 𝐺𝑅[𝑆]

• Every node at distance ≤ 2 to a center
in 𝐺𝑅, and thus at distance ≤ 2𝑅 in 𝐺
→ (4 + 𝜖)-approximation

16



Dominating Sets via Random Sampling

Static sampling algorithm:

• Sample Θ(𝑘 log 𝑛) nodes uniformly at random, add them to 𝑆
• Remove sampled nodes and neighbors from graph
• If more than 𝑛

2 nodes left: return “no MIS of size ≤ 𝑘”
• Iterate until Θ(𝑘 log 𝑛) nodes left (and add them to 𝑆)

→ Algorithm only needs access to edges incident on 𝑆 in 𝐺𝑅
→ Incremental algorithm very similar

17
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Bounding Size of Dominating Set

Lemma
With high probability: If graph 𝐺′

𝑅 at the end of an iteration has
more than 𝑛/2 nodes, then 𝐺𝑅 has no MIS of size ≤ 𝑘.

Proof by contradiction:
• Suppose 𝐺𝑅 has MIS 𝐶 of size ≤ 𝑘
• 𝐶 ∩ 𝑉 (𝐺′

𝑅) is also an MIS in 𝐺′
𝑅

• Number of nodes in 𝐺′
𝑅 is at most |𝐶| ×maximum degree in 𝐺′

𝑅
• By random sampling (“hitting set”): maximum degree ≤ 𝑛

2𝑘
• Thus, 𝐺′

𝑅 has at most 𝑘 × 𝑛
2𝑘 = 𝑛

2 nodes. Contradiction

Consequence:
• 𝑂(log 𝑛) iterations of sampling procedure

• 𝑆 has �̃�(𝑘) nodes
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An Open Problem

Question
Can we efficiently maintain a 𝑘-bounded MIS with total recourse
poly(𝑘)?

Random edge insertions analogy:

• Each endpoint is in 𝑘-bounded MIS with probability 𝑘
𝑛

→ at most 𝑛2 insertions with “conflict” probability 𝑘2
𝑛2 each

• Suggests that a total recourse of �̃�(𝑘2) might be achievable
against an oblivious adversary

• Could potentially carry over to (2 + 𝜖)-approximate
incremental 𝑘-center with amortized update time �̃�(𝑘2)

• Attention: Recourse guarantee is needed for dense
neighborhood graph
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Conclusion



Remarks

Nice application of dynamic approximate SSSP

Path-reporting seems to be less relevant in this context

Incremental was the difficult question for this problem

Incremental model more relevant than we usually consider

Interesting question about dynamic MIS suddenly shows up
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Future Work

Consider other clustering objectives in graphs

Engineer dynamic approximate SSSP algorithm

Thank you!
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