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Changes to Input Changes to Output

Updates
• Insertions (incremental) or deletions (decremental) of edges/vertices, or both (fully dynamic)
• Fast worst-case or amortized update time
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Streaming Algorithms
• Focus on space usage
• Standard model: insertions
• Impossibility results for single-pass streaming

Online Algorithms
• Focus on competitive ratio of output
• Standard model: irrevocable decisions
• Online algorithms with recourse
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Input + black-box predictions (possibly inaccurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimal guarantee

best classic worst-case guarantee

consistency

robustness
smoothness



Predictions can improve competitive ratio of online algorithms

First applications:
Ski-rental and ad allocation, [Mahdian, Nazerzadeh, Saberi ’07]
Caching [Lykouris, Vassilvitskii, ICML’18]

Possible Predictions:
Number of days skiings,
Frequencies of keywords used,
When will the currently requested item be requested again?

source: arxiv.org/abs/2006.16239
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How can predictions improve dynamic algorithms?

• Predict future updates
• Can we improve the update time?

Perfect and full knowledge about future = offline dynamic algorithms

Ideal Result:
• With predictions we can do what is (provably) impossible without them
• (Provable) Gap between offline and online problem

What is provably impossible? → Conditional lower bounds



Discussion of Conditional Lower Bounds

[Abboud, Vassilevska Williams ’14]
Influential paper presenting conditional lower bounds for dynamic problems based on static
hardness assumptions:
• Strong Exponential Time Hypothesis
• No truly subquadratic 3SUM
• No truly subcubic all-pairs shortest paths
• No almost linear time triangle detection
• No truly subcubic combinatorial Boolean matrix multiplication
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[Abboud, Vassilevska Williams ’14]
Influential paper presenting conditional lower bounds for dynamic problems based on static
hardness assumptions:
• Strong Exponential Time Hypothesis
• No truly subquadratic 3SUM
• No truly subcubic all-pairs shortest paths
• No almost linear time triangle detection
• No truly subcubic combinatorial Boolean matrix multiplication

“Problem”: These reductions also apply to the offline dynamic model



Online Matrix-Vector Multiplication Hypothesis [Henzinger, K, Nanongkai, Saranurak ’15]

Input:
• M — Boolean n× n matrix , given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Hypothesis: requires n3−o(1) time

Does not hold offline — compute M · [v1, . . . , vn] in O(nω) time

...

M v1 v2 vi vn
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Online Matrix-Vector Multiplication with Predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Algorithm:
• Preprocessing in O(nω) time

M · [v̂1, . . . , v̂n]

• Each request in O(nηi) time, ηi = ||vi − v̂i||1 = ||vi − v̂i||0

Mvi = M(vi − v̂i + v̂i) = M(vi − v̂i) +Mv̂i

O(nηi) O(n)

Total time: O(nω + nη), η =
∑n

i=1 ηi



Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
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D[a, b] = minP∈{paths from a to b}maxe∈P weight(e)

Edge weights = arrival time
If D[a, b] ≤ j =⇒ after j insertions: path from a to b



Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?



Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?

k non-predicted edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b



Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?

k non-predicted edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b



Our results for graph problems

Partially dynamic
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see also [Henzinger, Saha, Seybold, Ye, ’24]

see also [Liu, Srinivas ’24]



Discussion and Future Directions

• More problems with faster offline algorithms?
(see [McCauley et al. ICALP ’25], [Górkiewicz, Karczmarz ICALP ’25])

• Insisting on offline-online gap might be too restrictive
More fine-grained or practical models for algorithms with predictions?
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Thank you!


