
On Dynamic Graph Algorithms with Predictions

Jan van den Brand Sebastian Forster (né Krinninger) Yasamin Nazari Adam Polak
Georgia Tech University of Salzburg VU Amsterdam and CWI Bocconi University

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 947702)

Dynamic Environments

Dynamic Algorithms
Algorithm

Input OutputInput

Dynamic Algorithms
Algorithm

Changes to Input Changes to Output

Dynamic Algorithms
Algorithm

Changes to Input Changes to Output

Updates
• Insertions (incremental) or deletions (decremental) of edges/vertices, or both (fully dynamic)
• Fast worst-case or amortized update time

Other Models of Evolving Data

Streaming Algorithms
• Focus on space usage
• Standard model: insertions
• Impossibility results for single-pass streaming

Other Models of Evolving Data

Streaming Algorithms
• Focus on space usage
• Standard model: insertions
• Impossibility results for single-pass streaming

Online Algorithms
• Focus on competitive ratio of output
• Standard model: irrevocable decisions
• Online algorithms with recourse

Learning-Augmented Algorithms
Input + black-box predictions (possibly inaccurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimal guarantee

best classic worst-case guarantee

Learning-Augmented Algorithms
Input + black-box predictions (possibly inaccurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimal guarantee

best classic worst-case guarantee

consistency

Learning-Augmented Algorithms
Input + black-box predictions (possibly inaccurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimal guarantee

best classic worst-case guarantee

consistency

robustness

Learning-Augmented Algorithms
Input + black-box predictions (possibly inaccurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimal guarantee

best classic worst-case guarantee

consistency

robustness
smoothness

Predictions can improve competitive ratio of online algorithms

First applications:
Ski-rental and ad allocation, [Mahdian, Nazerzadeh, Saberi ’07]
Caching [Lykouris, Vassilvitskii, ICML’18]

Possible Predictions:
Number of days skiings,
Frequencies of keywords used,
When will the currently requested item be requested again?

source: arxiv.org/abs/2006.16239

How can predictions improve dynamic algorithms?

• Predict future updates
• Can we improve the update time?

How can predictions improve dynamic algorithms?

• Predict future updates
• Can we improve the update time?

Perfect and full knowledge about future = offline dynamic algorithms

How can predictions improve dynamic algorithms?

• Predict future updates
• Can we improve the update time?

Perfect and full knowledge about future = offline dynamic algorithms

Ideal Result:
• With predictions we can do what is (provably) impossible without them
• (Provable) Gap between offline and online problem

How can predictions improve dynamic algorithms?

• Predict future updates
• Can we improve the update time?

Perfect and full knowledge about future = offline dynamic algorithms

Ideal Result:
• With predictions we can do what is (provably) impossible without them
• (Provable) Gap between offline and online problem

What is provably impossible? → Conditional lower bounds

Discussion of Conditional Lower Bounds

[Abboud, Vassilevska Williams ’14]
Influential paper presenting conditional lower bounds for dynamic problems based on static
hardness assumptions:
• Strong Exponential Time Hypothesis
• No truly subquadratic 3SUM
• No truly subcubic all-pairs shortest paths
• No almost linear time triangle detection
• No truly subcubic combinatorial Boolean matrix multiplication

Discussion of Conditional Lower Bounds

[Abboud, Vassilevska Williams ’14]
Influential paper presenting conditional lower bounds for dynamic problems based on static
hardness assumptions:
• Strong Exponential Time Hypothesis
• No truly subquadratic 3SUM
• No truly subcubic all-pairs shortest paths
• No almost linear time triangle detection
• No truly subcubic combinatorial Boolean matrix multiplication

“Problem”: These reductions also apply to the offline dynamic model

Online Matrix-Vector Multiplication Hypothesis [Henzinger, K, Nanongkai, Saranurak ’15]

Input:
• M — Boolean n× n matrix , given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Hypothesis: requires n3−o(1) time

Does not hold offline — compute M · [v1, . . . , vn] in O(nω) time

...

M v1 v2 vi vn

Online Matrix-Vector Multiplication with Predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Online Matrix-Vector Multiplication with Predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Algorithm:
• Preprocessing in O(nω) time

M · [v̂1, . . . , v̂n]

• Each request in O(nηi) time, ηi = ||vi − v̂i||1 = ||vi − v̂i||0

Mvi = M(vi − v̂i + v̂i) = M(vi − v̂i) +Mv̂i

O(nηi) O(n)

Total time: O(nω + nη), η =
∑n

i=1 ηi

Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

D[a, b] = minP∈{paths from a to b}maxe∈P weight(e)

Edge weights = arrival time
If D[a, b] ≤ j =⇒ after j insertions: path from a to b

Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?

Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?

k non-predicted edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b

Incremental All-Pairs Reachability
Update: Insert directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) total update time (for n nodes and m edges) [Italiano, TCS 86]
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv
Offline = all-pairs bottleneck paths [this work]
(O(n(3+ω)/2) ⩽ O(n2.687) pre-processing time, via min-max matrix product [DP09])

Prediction: sequence of insertions. How do we handle prediction errors?

k non-predicted edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: update sequence

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: update sequence

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: update sequence

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: update sequence

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: update sequence

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Fully dynamic
(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

• All-pairs shortest paths
(Exact APSP)

• Uses a general reduction

Preprocessing —
Update Õ(n2)

Query Õ(n2ηi)

ℓ1 error per operation

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: update sequence

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: update sequence

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Fully dynamic
(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

• All-pairs shortest paths
(Exact APSP)

• Uses a general reduction

Preprocessing —
Update Õ(n2)

Query Õ(n2ηi)

ℓ1 error per operation

↰

see also [Henzinger, Saha, Seybold, Ye, ’24]

see also [Liu, Srinivas ’24]

Discussion and Future Directions

• More problems with faster offline algorithms?
(see [McCauley et al. ICALP ’25], [Górkiewicz, Karczmarz ICALP ’25])

• Insisting on offline-online gap might be too restrictive
More fine-grained or practical models for algorithms with predictions?

Discussion and Future Directions

• More problems with faster offline algorithms?
(see [McCauley et al. ICALP ’25], [Górkiewicz, Karczmarz ICALP ’25])

• Insisting on offline-online gap might be too restrictive
More fine-grained or practical models for algorithms with predictions?

Thank you!

